[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



348 名前:現代数学の系譜 古典ガロア理論を読む mailto:sage [2017/07/02(日) 08:05:18.84 ID:Tk8xp2li.net]
>>310 つづき

補足:
>この時点であなたはただひとつの類T=[r]に属するR^Nの元たちを標本に選びました。
>この問題設定は誰も考えたことがないと思います。あなたのオリジナルですね。

ええ、問題に則して考えると、そうなるべきと思います。というか、この時枝記事の問題は、普通の確率論のテキストにありませんから、そこはオリジナルです
そもそも、問題に則して考える以外にないでしょ? (貴方は別の設定ですか?)
問題の流れとして、商集合の構成→各代表元選定→問題の数列構成→問題の数列の属する商集合特定(しっぽの確認)→代表番号決定 ですからね
代表番号の決定は、問題の数列 vs 代表元 との比較で、しっぽの一致する位置で決まりますから。
(補足:札があって、1が1枚、2が1枚、3が1枚 計3枚なら、1の確率は1/3。1が1枚、2が2枚、3が3枚 計6枚なら、1の確率は1/6。札の重複がある場合と均一な場合とでは、確率計算が異なる)
普通ここ、重複がある場合という意識が、ないだろうと(錯覚その1)

> 2.Fとしてボレル集合B(R)を取れば任意の点s∈Rについて{s}∈B(R)。
> 3.確率測度として例えば正規分布Pを取る。

まず、上記>>309 Q1に記したように、平場 誠示先生は、「1 点の長さは0」だと。「1 点の長さ」が、0以外の値を取り得るという主張ですか?
次に、ボレル集合B(R)のベースは、例えば、どんな確率論のテキストでも書いてあると思いますが、
例えば>>276 平場 誠示先生テキスト ルベーグ積分論 P5 「2.2 Borel 集合体」にあるように
「X が位相空間のとき, 開集合の全体O から生成されるσ-field σ(O) をBorel field と呼び, B(X) で表す」ですよ
開集合について、時枝問題においては、どうお考えですか?
最後に、正規分布は→-∞および+∞ で、0(ゼロ)に収束しますよ。
(-∞、+∞)の区間を考えたとき(=定義される関数で)、→-∞および+∞ で、0(ゼロ)に収束しない関数は、全区間で積分すれば、発散しますよ
なので、あなたが考えている分布が、「→-∞および+∞ で、0(ゼロ)に収束」することを証明しないといけません。あなたは、そこはスルーですか?

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef