[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/10 23:58 / Filesize : 512 KB / Number-of Response : 634
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む29



47 名前:132人目の素数さん mailto:sage [2017/01/21(土) 15:37:35.09 ID:h5b1EsCb.net]
実関数 f(x)=x^x x>0 と超越的性質との性質を考える。
xが正の有理数のときは x^x は正の代数的数である。
xが正の代数的無理数のときは、ゲルフォント・シュナイダーの定理より、x^x は超越数。
f(x) x>0 は確かに連続である。x>1 のとき f(x) x>0 は単調増加で、
f(1)=1、f(2)=2^2=4 だから、f(a)=2 を満たす正の実数aが存在し、a>1。
ゲルフォント・シュナイダーの定理に注意すると、aは有理数か超越数である。
aが有理数とする。aが既約分数として a=q/p p,qは互いに素、と表されているとする。
すると、a^a=2 だから、(q/p)^{q/p}=2 であり (q/p)^q=2^p から q^q=2^p・p^q。
従って、qは偶数で、1≦m<q を満たすような整数mを用いて q=2m と表せる。
(2m)^{2m}=2^p・p^{2m} から 2^{2m}・m^{2m}=2^p・p^{2m} であり、2^{2m-p}・m^{2m}=p^{2m}。
ここで、確かに a>1 だから、確かに q>p つまり 2m>p であり、2m-p は正の整数である。
従って、p^{2m} は偶数であり、pは偶数である。しかし、p,q は互いに素だから、
p,q が両方偶数となることはあり得ない。この矛盾はaを有理数としたことから生じたから、
背理法が適用出来る。そこで、背理法を適用すると、a^a=2 を満たすような正の実数aは超越数である。
この結果から、xが正の超越数のときは、f(x)=x^x x>0 が有理数となることがある。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef