[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/10 23:58 / Filesize : 512 KB / Number-of Response : 634
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む29



423 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2017/04/11(火) 16:58:17.82 ID:lkRTR/rP.net]
>>357
どうも。スレ主です。
私は、ここら素人以前ですが、ベイカーの定理の系3(下記)が、おっちゃんの命題に近くないか?(^^;
https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%AB%E3%83%BC%E3%81%AE%E5%AE%9A%E7%90%86
(抜粋)
ベイカーの定理 (ベイカーのていり、英: Baker's theorem) とは、1966年-1968年にかけて、アラン・ベイカーによって発表された、対数関数の一次形式に対する線形独立性、および下界の評価に関する一連の定理のことである。 下界の評価が計算可能であることから、数論の様々な分野で応用されている。

定理の主張[編集]
定理1 (対数関数の一次形式の線形独立性)
α1,・・・,αnを 0 ではない代数的数とする。もし、 log α1,・・・,log αnが有理数体上線形独立であるならば、1, log α1,・・・,log αn は、代数的数体上線形独立である。

定理からの派生的な結果

系3  α1,・・・,αnを 0 でも 1 でもない代数的数とする。また、 β1,・・・,βnを、 1, β1,・・・,βnが、有理数上線形独立な代数的数としたとき、
α1^β1・・・,αn^βn
は、超越数である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef