- 130 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2017/01/28(土) 10:14:29.46 ID:cIMCvfu9.net]
- >>115
ここ面白いと思った (引用開始) 論理式の集合が「矛盾する」とはモデルを持たないことだと“定義”すれば、コンパクト性定理は次のことを言っている。 Aが矛盾する ⇔ Aの有限部分集合で矛盾するものがある つまり、矛盾が生じる原因が「公理が無限個だから」ということではなくて、無限のなかの有限個で既に矛盾が生じているのである。矛盾の原因を有限個の論理式として(超越的/原理的には)特定できることになる。 応用としては、例えば、普通の自然数に加えて無限大自然数をたくさん(ものすごくたくさん)入れても、矛盾なく自然数概念が定義できる(モデルが存在する)、とかを示せる。こうしてできるモデルは、超準自然数系だが、実際に構成するにはウルトラフィルター/ウルトラ積を使う。 コンパクト性定理そのものを示すにもウルトラフィルターを使ったと思う。チコノフの定理も確かウルトラフィルターを使う証明があったような気がする(記憶が曖昧)。コンパクト性はウルトラフィルターで表現するのが自然なのかもしれない。 (引用終り) 逆に言えば、(対偶をとって)Aの有限部分集合で矛盾するものがない ⇔ Aは矛盾しない かな
|

|