(1 + x + … + x^n) / (n+1) ≧ (1 * x * … * x^n)^(1/(n+1))
1/(1 + x + … + x^n) ≦ x^((1/2)*n) / (n+1)
--------------------------------------------------------- 0 < n * ∫ 1/(1 + x + … + x^n) dx from x = 0 to x = 1 < n * ∫ x^((1/2)*n) / (n+1) dx from x = 0 to x = 1 =n / ((n+1)*((1/2)*n+1)
n / ((n+1)*((1/2)*n+1) -> 0 (n -> ∞)
だから、
n * ∫ 1/(1 + x + … + x^n) dx from x = 0 to x = 1 -> 0 (n -> ∞)