[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 03:46 / Filesize : 277 KB / Number-of Response : 1038
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



994 名前:132人目の素数さん mailto:sage [2015/11/23(月) 13:42:51.95 ID:aROouTrn.net]
(x+2y)^2-2(x+y)^2=-(x^2-2y^2)はA^2-2B^2=-(x^2-2y^2)という等比数列の形をしていて公比が-1。
そう考える場合、第n項がx^2-2y^2なら第n+1項が(x+2y)^2-2(x+y)^2ということになる。
整理すると、
x[n+1]=x[n]+2y[n]
y[n+1]=x[n]+y[n]
という2つの数列を考え(これらは初項が自然数ならすべての項が異なる自然数になる)、
さらに{P[n]}={x[n]^2+2y[n]^2}という数列でP[1]が1または-1のものを考えれば、
数列{P[n]}は1と-1が交互に表れる数列ということになる。
このような{P[n]}には値が-1である項が無限に存在するから、x[n]、y[n]はnによって異なるので題意を証明出来たことになる。
従って、初項が1あるいは-1であるものを見つければよいからx^2-2y^2=-1の自然数解を1つ見つければいい。
(1,1)がすぐに見つかると思うけど、ここは勘なのかなにか方法があるのかよくわからない。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<277KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef