E_{n,k}、n≧1,k≧0は可算集合になって、特性関数χ_{n,k}、n≧1,k≧0が取る値は0に限るから、 g_n(x)≦f(x)≦h_n(x) for all n≧1,x∈X の部分が nχ_∞(x)≦f(x)≦∞χ_∞(x) for all n≧1,x∈X と書ける。 以下、可測関数f:X→[0,+∞]が「上に非有界、E_∞は非可算」として話を進める。 「E_∞」の特性関数χ_∞について或るx∈「E_∞」に対してχ_∞(x)=1とすると、 n→+∞のときnχ_∞(x)→+∞になり矛盾が生じるので、任意のx∈「E_∞」に対してχ_∞(x)=0になる。 なので、「E_∞が可算集合」となるようなfを考えていることになって、nχ_∞(x)≦f(x)≦∞χ_∞(x) for all n≧1,x∈X の部分はf(x)=0 for all x∈Xになる。そんな訳で、少なくともE_∞が非可算となるような 非可算な可測集合X上で定義される上に非有界な可測関数f:X→[0,+∞]のときを考えていないことになる。