- 1 名前:132人目の素数さん mailto:sage [2015/02/27(金) 10:38:04.85 ID:EbhLAWFK.net]
- _....._{{ 〃
, - ' ,..、、.ヾ{{フ'⌒`ヽ、 / ,:', -‐‐` ´ '´⌒ヽ ヾ:、 . ,' ,'´ ,ィ ,ィ ,' , `ヽ', ',-< ,' .i /|. /.| { i, i, }. }_,,)) ! | ! .,'-.{ ! !|; |`、.}゙!.! |. ! ヽ. ', ', |Vァ=、゙、 `゙、!-_:ト,リ', l ! | ゙', ヽ、', l:!Kノ}. f:_.)i゙i: リ ! l ル | l!iヾ- ' , .!__:ノ ゙ ,リ l リ'´ . ',|!!、 r‐┐ ` ノ'. /,イ / ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ 'i!゙、ヽ、 ゙ー' _, ィ,:',:''´ < Mathematica に関する話題はここに書いてね! ゙:、ィ、jヾー::: 'iヘ .ノ',リ. \___________________ ,、- '´ ヽ、゙、 { `>"、 /\\ ', } //`ヽ 過去スレ 〓Mathematica〓 science2.2ch.net/test/read.cgi/math/985023298/ 〓 Mathematica 2 〓 science3.2ch.net/test/read.cgi/math/1078534285/ 〓 Mathematica 3 〓 science6.2ch.net/test/read.cgi/math/1121413040/ 〓 Mathematica 四 〓 kamome.2ch.net/test/read.cgi/math/1197270001/ (鯖飛びでログ消滅) mimizun.com/log/2ch/math/1197270001/ 〓 Mathematica 5 〓 kamome.2ch.net/test/read.cgi/math/1285859504/ 〓 Mathematica 伍 〓 (実質6) wc2014.2ch.net/test/read.cgi/math/1320969748/
- 2 名前:132人目の素数さん mailto:sage [2015/02/27(金) 20:35:00.69 ID:+UQKa//5.net]
- 前スレ>>997
>どんなプロセスを経てるのかはブラックボックスだが。 Traceを使えば途中のプロセスを確認できます(見方はヘルプ参照)。 ex. Simplify[Sum[ n Binomial[m, n] FactorialPower[m, n] FactorialPower[l - m, m - n], {n, 1, m}]/FactorialPower[l, m] // FunctionExpand, Assumptions -> Element[m, Integers]] // Trace
- 3 名前:132人目の素数さん mailto:sage [2015/02/28(土) 23:40:16.67 ID:DZoqI/Ay.net]
- raspberry piのmathematicaをスマホで使うってできます?
両方共Linuxだしいけそうなんだけど
- 4 名前:132人目の素数さん [2015/03/11(水) 18:56:11.04 ID:5t8YBppG.net]
- ウルフラムデモンストレーションプロジェクト
が10000を超えたみたいだね このスレに投稿したことある人っているの?
- 5 名前:132人目の素数さん mailto:sage [2015/03/11(水) 19:04:21.30 ID:Np8Z0I3f.net]
- 一行でさらっとデモ書けるとかっこいいんだろうな。
- 6 名前:132人目の素数さん [2015/06/18(木) 22:21:54.71 ID:l1rDPpYs.net]
- 閑散スレなので回答は期待しないけど、あえてお尋ねします:
wolframaplha(Web版)で、 1.Mathematicaのコマンドを実行するにはどうしたらいいのでしょうか? やろうとすると、認識できませんでしたとか何とか、拒否されます。 2.変数名に、たとえばi0など使うと、ベッセル級数であると勝手に解釈されてしまいます。 この解釈をやめさせる(エスケープする)には、どうしたらよいでしょうか?
- 7 名前:132人目の素数さん mailto:sage [2015/06/19(金) 20:03:47.34 ID:T41qgADD.net]
- 具体的な「問題点」を特徴づける、例題はありますか?
変数名のi0が、ベッセル級数?<なら変名数変えろよ。 おら心折れて、やる気△1000%なんで↓↓↓対応よろ。
- 8 名前:132人目の素数さん mailto:sage [2015/06/20(土) 02:42:58.70 ID:6PEFarmy.net]
- ???
- 9 名前:132人目の素数さん mailto:sage [2015/06/22(月) 12:20:24.66 ID:LN7kEZbm.net]
- ベクトル解析分野の研究に使ってる人がいた
図解が便利だって言ってたけど結局研究進められず 田舎に帰ってったわ 無駄な買い物だったね
- 10 名前:132人目の素数さん mailto:sage [2015/06/22(月) 22:22:08.70 ID:eeRhDB1W.net]
- ベクトル解析分野の研究ってすごく頭の悪そうな言い方がよくできるな。
- 11 名前:132人目の素数さん mailto:sage [2015/06/23(火) 01:05:36.61 ID:Uz6Ys7tN.net]
- 研究利用で図解に便利と言っているぐらいだから察してあげるべき
- 12 名前:132人目の素数さん mailto:ばからて [2015/06/27(土) 22:09:47.97 ID:Lroxz4xC.net]
- 中身のない研究者は洗練された文言でごまかすというのが学会の常識である。
- 13 名前:132人目の素数さん mailto:sage [2015/06/27(土) 22:29:22.01 ID:AND4dtuQ.net]
- 中味のない研究はmathematicaでごまかすのが常識である。
- 14 名前:132人目の素数さん mailto:sage [2015/07/02(木) 19:38:46.21 ID:xmHLxpka.net]
- ParametricPlot[{cos[t],sin[t]},{t,0,2Pi}]これで円描こうと思ったんだけど何かダメみたいです。何が間違いですか?
- 15 名前:132人目の素数さん mailto:sage [2015/07/02(木) 20:21:59.69 ID:65cbSMwp.net]
- 関数名は最初大文字
- 16 名前:132人目の素数さん mailto:ばからて [2015/07/06(月) 19:32:10.76 ID:f2WBNGIf.net]
- Webでは大丈夫だよ
- 17 名前:132人目の素数さん mailto:sage [2015/07/14(火) 03:46:06.73
]
- [ここ壊れてます]
- 18 名前: ID:LiWlwh92.net mailto: 画像回転させると変な模様みたいなの出るのな
これってなんで出るんだ? [] - [ここ壊れてます]
- 19 名前:132人目の素数さん mailto:sage [2015/07/14(火) 17:36:08.31 ID:IZD0iO1s.net]
- モアレ?
- 20 名前:132人目の素数さん mailto:sage [2015/07/15(水) 22:00:10.11 ID:xw9NvOmU.net]
- >>18
そうモアレ これって回避する方法ってなんかある?
- 21 名前:132人目の素数さん mailto:sage [2015/07/15(水) 23:58:50.60 ID:9YHmMtXT.net]
- ない!
- 22 名前:132人目の素数さん mailto:sage [2015/07/31(金) 15:10:37.74 ID:aPY2SDMh.net]
- 解像度を下げて拡大表示するしかないね。
- 23 名前:132人目の素数さん mailto:sage [2015/08/13(木) 16:15:56.75 ID:ZNiLVcdt.net]
- Mathematica10.0.0と10.0.2の間でkeygenが使えなくなってたりしますか
なんかうまくいきません
- 24 名前:22 mailto:sage [2015/08/13(木) 16:51:22.45 ID:ZNiLVcdt.net]
- 解決しました!
- 25 名前:132人目の素数さん [2015/08/14(金) 22:11:49.85 ID:tsvz1M5z.net]
- Mathematicaのソースコードはどこに書くのでしょうか?
ノートブックといわれるファイルに書くのでしょうか? それともテキストエディタを使ってコードを書いて、ノートブックから読み込むのでしょうか?
- 26 名前:132人目の素数さん mailto:sage [2015/08/14(金) 22:27:37.66 ID:131cX4Ip.net]
- ノートブックに
1+1 Enter とか入力したらどうなるん? つーかそもそもどういう環境?
- 27 名前:132人目の素数さん [2015/08/15(土) 00:13:34.14 ID:kFSNb2CH.net]
- >Mathematicaのソースコード
それは門外不出
- 28 名前:132人目の素数さん [2015/08/15(土) 07:02:59.04 ID:j0qrH8Xi.net]
- ラズベリーパイ2でのMathematicaの使い心地はどうですか?
遅すぎますか?
- 29 名前:132人目の素数さん mailto:sage [2015/08/16(日) 13:00:55.98 ID:K3Qi5+8T.net]
- パッケージファイルのこと?
- 30 名前:132人目の素数さん mailto:sage [2015/08/17(月) 20:45:47.61 ID:9jMMb3DB.net]
- >>22
10.0.0.2ってMACしかなくね?
- 31 名前:132人目の素数さん mailto:sage [2015/08/19(水) 01:04:50.81 ID:MsAJerlF.net]
- 10.2バージョンうpのメールきた
- 32 名前:132人目の素数さん mailto:sage [2015/08/19(水) 13:43:59.70 ID:cV7pE5O3.net]
- やっとかー
アメリカに遅れること約1ヶ月か。
- 33 名前:132人目の素数さん mailto:うそよ [2015/09/02(水) 16:12:46.94 ID:P2FwdD16.net]
- むかしは
plot[....] でぐらふがかけたのに(いまでも) いまでは ss := plot[....]; ではぐらふがかけないね ss 出かける。 いつからこうなったんだろう
- 34 名前:132人目の素数さん mailto:sage [2015/09/03(木) 02:03:56.25 ID:6b8jsJgU.net]
- 最後にセミコロンがついているから、出力を抑制してるだけでは?
- 35 名前:132人目の素数さん mailto:sage [2015/09/03(木) 02:08:19.72 ID:nPYXDvzv.net]
- :=だからじゃねーの
- 36 名前:132人目の素数さん [2015/09/07(月) 04:19:54.84 ID:mkN4TiZz.net]
- RasberryPI2のMATHEMATICAについての質問です。
コマンドのマセマティカは動くのですが、WINDOW(X)画面はINITIALZEで灯ったままです。 そのまえは動いていたのですが、同じような経験のかたはいませんか?
- 37 名前:132人目の素数さん [2015/09/07(月) 21:07:21.98 ID:mkN4TiZz.net]
- こわれたんだよ キミ
やすいから まず CARD(1500円)をかって再インストールするんだな あとは誰かよく知っている奴に教えても懶惰な
- 38 名前:132人目の素数さん [2015/09/12(土) 04:24:22.92 ID:bTfzVmge.net]
- 377 :132人目の素数さん:2015/09/06(日) 16:49:15.46 ID:A7xQ0jVT
あ、訂正します: Raspberry Pi2が届きました。 RaspbianをインストールしMathematicaを使ってみましたが問題がありました。 最初は起動できるのですが、一度終了して、また起動しようとすると、 「Initializing Kernels ...」というメッセージのところでフリーズ してしまうんですよね。 調べたところまだ修正されていないバグだそうです。 対策は、WolframというGUIではないMathematicaを起動して、 PacletUpdate["CloudObject"] を評価すると以後、問題なく使えるようになるようです。 ちなみに、Raspberry Pi2の性能でもほとんど速度的に問題なく Mathematicaを使えるようです。 SDカードにも注意が必要です。 Amazon.co.jpで推奨のTranscendの32GBのmicroSDカードを最初に買った のですが、エラーが出て起動できなくなりました。調べたら他にも同じ 人がいて、どうも相性が良くないようです。相性というか、Raspberry Pi2 かmicroSDカードのどちらかがmicroSDカードの仕様を満たしていないか、 microSDカードの仕様自体に問題があるかですよね。ひどい話です。 SAMSUNGの32GBのmicroSDカードを新たに買いましたが、全く問題なく 使用できています。 家でもMathematicaが安く使えるっていいですよね。
- 39 名前:132人目の素数さん mailto:sage [2015/09/18(金) 19:58:04.49 ID:npM5UDr5.net]
- mathematicaはlispに似てるのかな?
- 40 名前:132人目の素数さん mailto:sage [2015/09/20(日) 09:26:09.42 ID:wSAuf8N0.net]
- 双方から「あんなのと一緒にするな!」と叱られそうだw
- 41 名前:132人目の素数さん [2015/09/22(火) 22:51:36.47 ID:xhHJSXd3.net]
- ほふにゃ〜ん
- 42 名前:132人目の素数さん [2015/09/29(火) 13:42:22.41 ID:BSxu+0U8y]
- この掲示板、現在、投稿可能でしょうか?
- 43 名前:132人目の素数さん [2015/09/30(水) 19:19:36.73 ID:/y4CU8As0]
- こんにちは、
下記の計算で、z1=z2となりますが、前に係数epが付いただけで、 y1=y2、y1=y3となりません。 なぜでしょうか?
ep =.; a =.; z1 = Exp[-Log[a]] z2 = Exp[Log[1/a]] z1 - z2 y1 = Exp[ep/2*(Log[1/a])] y2 = Exp[ep/2*(-Log[a])] y3 = Exp[-ep/2*(Log[a])] FullSimplify[y1 - y2] FullSimplify[y1 - y3]
- 44 名前:132人目の素数さん mailto:sage [2015/10/01(木) 10:21:05.21 ID:oTlTUtkC.net]
- こんにちは、
すいませんが、以下を教えて下さい。 質問1、 a^(k)=Exp[k*Log[a]] ですが、(下記の計算参照) y1 = (1/a)^(k/2)を、変換して y2 = Exp[k/2*(Log[1/a])] か、もしくは y3 = Exp[k/2*(-Log[a])] に書き換えることは可能でしょうか? 可能でしたら、 (1/a)^(k/2)→ Exp[k/2*(Log[1/a])] (1/a)^(k/2)→ Exp[k/2*(-Log[a])] に書き換える方法を知りたいです。 x1 = a^(k) x2 = Exp[k*Log[a]] x1 - x2 y1 = (1/a)^(k/2) y2 = Exp[k/2*(Log[1/a])] y3 = Exp[k/2*(-Log[a])]
- 45 名前:132人目の素数さん mailto:sage [2015/10/01(木) 10:21:31.83 ID:oTlTUtkC.net]
- 質問2、
下記の計算で、z1=z2となりますが、前に係数kが付いただけで、 y1=y2、y1=y3となりません。 なぜでしょうか? k =.; a =.; z1 = Exp[-Log[a]] z2 = Exp[Log[1/a]] z1 - z2 y1 = Exp[k/2*(Log[1/a])] y2 = Exp[k/2*(-Log[a])] y3 = Exp[-k/2*(Log[a])] FullSimplify[y1 - y2] FullSimplify[y1 - y3]
- 46 名前:132人目の素数さん mailto:sage [2015/10/01(木) 13:46:42.25 ID:q69rHjXO.net]
- >>44
多価性
- 47 名前:132人目の素数さん [2015/10/02(金) 22:56:01.28 ID:me7VNaXR.net]
- >>44
多価関数の分岐問題を無視するなら、FullSimplifyでなく PowerExpandを強行作用させる。 >>43 組込関数PowerのProtect属性を一度外してオーバーロード (再定義)する。 その際には、Exp[k Log[a]]がa^kに自動的に簡約されない ように、HoldFormなどのラッパーをかませる。 またaがEだと無限地獄に陥るのでUnsameQなどの判定も必要。
- 48 名前:132人目の素数さん mailto:sage [2015/10/02(金) 22:58:12.22 ID:me7VNaXR.net]
- やべ・・・地下スレを上げちゃったゴメンなさい
- 49 名前:132人目の素数さん mailto:sage [2015/10/03(土) 12:09:38.46 ID:i3GiK4WT.net]
- >>46
ご回答有難う御座います。 >PowerExpandを強行作用させる。 解りました。 >>43 やってみます。
- 50 名前:132人目の素数さん mailto:sage [2015/10/03(土) 19:59:13.61 ID:1Xvcyzxf.net]
- >>48
言ってみたものの結構むずい、再帰終端があまいですが単純なサンプル例。 Unprotect[Power, Log]; Power[a_/;a=!=E, b_ /;b=!=-1]:=(b Log[a])//HoldForm[Power[E, #]] & Log[Power[a_,-1]]:=-Log[a] Protect[Power, Log]; 組込関数をいじっているので、副作用に注意が必要です。 (*Test*) (1/a)^(k/2) (* -> Exp[-1/2 k Log[a] *) % - Exp[k/2 Log[1/a]](* -> 0 *) Exp[-Log[a]] - Exp[Log[1/a]](* -> 0 *)
- 51 名前:132人目の素数さん mailto:sage [2015/10/04(日) 21:14:20.33 ID:VsqVNwlb.net]
- >>49
ご回答有難う御座います。 自分でやって、直ぐに諦めました。 ご回答を見て、「やっぱ難しい。」ことが確認出来ました。 副作用に注意の上、応用して、使用させて頂きます。 助かりました。
- 52 名前:132人目の素数さん mailto:sage [2015/10/04(日) 22:27:45.86 ID:i+FfBeQa.net]
- -1=(√(-1))^2=√((-1)^2)=1みたいな計算をするってオチが待ってるような
- 53 名前:132人目の素数さん mailto:sage [2015/10/07(水) 05:00:12.36 ID:CGHSLu1P.net]
- マセマティカのグラフィック最初に見た時衝撃的だったなー。
コンピューターとか数学の真の姿を見た気分だったw。当時は。
- 54 名前:132人目の素数さん mailto:sage [2015/10/07(水) 14:36:30.57 ID:iEgT5nzT.net]
- 最初にmathematicaを見たのはPC98x1用のMS-DOS版だったな
早速コピーして持って帰ったw
- 55 名前:132人目の素数さん mailto:sage [2015/10/07(水) 20:34:43.59 ID:GPZbsljf.net]
- 当時は数式処理ソフトってフリーウェアばかりで、そんな中
商用だなんてえれー自信過剰なやつだと思ったもんだ。
- 56 名前:132人目の素数さん mailto:sage [2015/10/07(水) 21:47:08.01 ID:xCO/kZ86.net]
- mathematicaの存在を知ったのは98年くらい。ちょうどインターネットが流行りだった頃だった
機能にもビビったが何よりも驚いたのは値段だな。adobe製品より高いじゃんって
- 57 名前:132人目の素数さん [2015/10/07(水) 22:48:46.62 ID:IP1y9sj4.net]
- 個人用は念頭にないのかもね
- 58 名前:132人目の素数さん mailto:sage [2015/10/09(金) 16:26:19.06 ID:ZgH28ffB.net]
- 研究費も取れないやつが個人で使うソフトじゃないってことだろ。
- 59 名前:132人目の素数さん [2015/10/09(金) 18:42:14.39 ID:27E40q/z.net]
- Mathematica 10.2
スノレパ切り捨てかよ
- 60 名前:132人目の素数さん [2015/10/09(金) 21:12:26.20 ID:GUJOWNGo.net]
- なぜ日本人には作れないのか?
- 61 名前:132人目の素数さん mailto:sage [2015/10/09(金) 21:45:08.91 ID:rT1ZZfem.net]
- Risa/Asirは日本発だよ
- 62 名前:132人目の素数さん mailto:sage [2015/10/10(土) 08:50:32.60 ID:8Ia75fQS.net]
- >>57
6000円もあればラズパイで使えるのに
- 63 名前:132人目の素数さん mailto:sage [2015/10/10(土) 08:54:38.12 ID:Uzke+66q.net]
- おま国な値段のホームエディション日本語版。えいごばんのねだんでも売ればいいのに
- 64 名前:132人目の素数さん mailto:sage [2015/10/10(土) 22:15:49.67 ID:/4Db+7J2.net]
- ラズパイにバンドルされてるんだな
NEXTみたいだw 高校生が宿題やるくらいだったら余裕って程度のマシンスペックだし個人用ならアリかもな
- 65 名前:132人目の素数さん mailto:sage [2015/10/11(日) 11:18:23.21 ID:6td4HPeh.net]
- >>63
2Bでどうにかまともに操作できるスペック BまではWolfram(CUI)でないと苦痛なレベル
- 66 名前:132人目の素数さん [2015/10/12(月) 16:36:51.72 ID:0PkZrgdI.net]
- 誰かMathematicaでAVIファイルの読み込みとかやった事ある人いないか
- 67 名前:132人目の素数さん [2015/10/12(月) 16:44:53.36 ID:0PkZrgdI.net]
- (* in *)
Import[ "IMGA.avi", {{ "BitDepth", "ColorSpace", "Duration", "FrameCount", "FrameRate", "ImageSize", "VideoEncoding" }}] Import["IMGA.avi", {"Frames", 1}] <-この結果が欲しい (* out *) {8, RGBColor, 7.173776069290165`, 172, 23.976215362548828`, {1280, 720}, "MJPG"} Import::fmterr: データをvideo形式でインポートすることができません. >> こんな感じで読み込めないんだよ これは文法的問題なのか動画のエンコードの問題なのか 一応Mathematica9で読み込めるMotionJPEGでエンコードしたんだが 誰か解決出来る人いない? ちなみに,H261,H263などのコーデックは試した.
- 68 名前:132人目の素数さん mailto:sage [2015/10/12(月) 21:39:23.02 ID:kOQXOCe2.net]
- >>66
10.2で手持ちのaviファイルで実行してみたけど、2つとも正常に動作した。 なので、エンコードの問題だね。
- 69 名前:132人目の素数さん [2015/10/12(月) 22:54:15.27 ID:OMgfvQc/.net]
- >>67 ありがと、エンコードソフト変えてみる。
- 70 名前:132人目の素数さん mailto:sage [2015/11/16(月) 12:39:42.46 ID:CDXjkC7P.net]
- こんにちは、
下記HPのP10 上から6行目計算をしたいのですが、入射・散乱光子の偏極の部分(下記コード参照)を、このように計算したらいいのか?解りません。 教えて下さい。 members3.jcom.home.ne.jp/nososnd/qed/comp.pdf (*コンプトン散乱〜クライン・仁科の公式 P10 上から6行目計算*) s =.; u =.; (*ガンマ行列*) g[0] = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}; g[1] = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, -1, 0, 0}, {-1, 0, 0, 0}}; g[2] = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, I, 0, 0}, {-I, 0, 0, 0}}; g[3] = {{0, 0, 1, 0}, {0, 0, 0, -1}, {-1, 0, 0, 0}, {0, 1, 0, 0}}; (*入射・散乱電子・光子*) sl[k] = g[0]*k0 + g[1]*(-k1) + g[2]*(-k2) + g[3]*(-k3); sl[k'] = g[0]*k0' + g[1]*(-k1') + g[2]*(-k2') + g[3]*(-k3'); sl[pi] = g[0]*pi0 + g[1]*(-pi1) + g[2]*(-pi2) + g[3]*(-pi3); sl[pf] = g[0]*pf0 + g[1]*(-pf1) + g[2]*(-pf2) + g[3]*(-pf3); e4 = IdentityMatrix[4]; ms = m*e4;
- 71 名前:132人目の素数さん mailto:sage [2015/11/16(月) 12:41:08.70 ID:CDXjkC7P.net]
- >>67の続きです
(*入射・散乱光子の偏極 ここの部分が解りません*) (*sl[epsilon]=g[0]*epsilon0+g[1]*(-epsilon1)+g[2]*(-epsilon2)+g[3]*(-epsilon3); sl[epsilon']=g[0]*epsilon0'+g[1]*(-epsilon1')+g[2]*(-epsilon2')+g[3]*(-epsilon3');*) sl[epsilon] = e4; sl[epsilon'] = e4; (*トレース部分の計算*) y1 = 0; y2 = 0; For[x = 0, x <= 3, x++, For[y = 0, y <= 3, y++, s1 = Tr[sl[epsilon'].sl[k].sl[epsilon].(sl[pi] + ms).sl[epsilon].sl[k].sl[epsilon'].(sl[pf] + ms)]; y1 = y1 + s1; ]];
- 72 名前:132人目の素数さん mailto:sage [2015/11/16(月) 12:42:42.80 ID:CDXjkC7P.net]
- >>68の続きです
(*計算結果の整理 入射・散乱光子の偏極でのこの部分も解りません*) y1 = y1 //. {pi1 -> 0, pi2 -> 0, k0 -> pi3, k1 -> 0, k2 -> 0, k3 -> -pi3, pf0 -> pi0, pf1 -> pi3*Sqrt[1 - z^2], pf2 -> 0, pf3 -> pi3*z, k' 0 -> pi3, k' 1 -> -pi3*Sqrt[1 - z^2], k' 2 -> 0, k' 3 -> -pi3*z, pi0 -> (s + m^2)/(2 Sqrt[s]), pi3 -> (s - m^2)/(2 Sqrt[s]), z -> 1 + t/(2 pi3^2), t -> 2 m^2 - s - u, epsilon0 -> 1, epsilon1 -> 1, epsilon2 -> 1, epsilon3 -> 1, epsilon0' -> 1, epsilon1' -> 1, epsilon2' -> 1, epsilon3' -> 1}; s = 2*k*pi + m^2; u = -2*k'*pi + m^2; Print["(*計算結果*)"]; Print[Simplify[y1]]; Print["(*正しい計算結果*)"]; 8*(pi*k)*(pi*k')
- 73 名前:132人目の素数さん mailto:sage [2015/11/17(火) 09:12:29.76 ID:3ovFUbn6.net]
- >>69
すいません。最後の正しい計算結果は、以下となるはずです。 Print["(*正しい計算結果*)"]; 8*(pi*k)*((pi*k') + 2*(epsilon'*k)^2)
- 74 名前:132人目の素数さん mailto:sage [2015/11/17(火) 15:58:46.02 ID:yKlve9W4.net]
- ベクトルとスカラーの区別もつかんのか
- 75 名前:132人目の素数さん mailto:sage [2015/11/17(火) 17:26:13.64 ID:3ovFUbn6.net]
- お返事有難う御座います。
>ベクトルとスカラーの区別もつかんのか この部分のことでしょうか? (*入射・散乱光子の偏極 ここの部分が解りません*) (*sl[epsilon]=g[0]*epsilon0+g[1]*(-epsilon1)+g[2]*(-epsilon2)+g[3]*(-epsilon3); sl[epsilon']=g[0]*epsilon0'+g[1]*(-epsilon1')+g[2]*(-epsilon2')+g[3]*(-epsilon3');*) sl[epsilon] = e4; sl[epsilon'] = e4; ベクトルにしました。 www43.tok2.com/home/iq188/ epsilon0 -> 1, epsilon1 -> 1, epsilon2 -> 1, epsilon3 -> 1, epsilon0' -> 1, epsilon1' -> 1, epsilon2' -> 1, epsilon3' -> 1 この部分を、直せば、計算できるのでしょうか?
- 76 名前:132人目の素数さん mailto:sage [2015/11/17(火) 21:39:39.86 ID:3ovFUbn6.net]
- ずーと考えているんですが、解らないです。
入射光子は k0 -> pi3, k1 -> 0, k2 -> 0, k3 -> -pi3, で、これに直交するので、たぶん epsilon0 -> 0, epsilon1 -> 1, epsilon2 -> 1, epsilon3 -> 0, となると思います。 では、散乱光子に k' 0 -> pi3, k' 1 -> -pi3*Sqrt[1 - z^2], k' 2 -> 0, k' 3 -> -pi3*z, に直交する epsilon0' -> ?, epsilon1' -> ?, epsilon2' -> ?, epsilon3' -> ?; 値は、あるのでしょうか?考え方が間違っているでしょうか?
- 77 名前:132人目の素数さん mailto:sage [2015/11/18(水) 13:05:57.11 ID:+rEnD0zr.net]
- >>75
>>69のpdfを最後まで読めば
- 78 名前:132人目の素数さん mailto:sage [2015/11/18(水) 14:08:48.47 ID:3O/g4pbU.net]
- >>66
Mathematica9でAVIのデータって対応コーデックでエンコードしてるはずなのに 読み込めない事あるよね
- 79 名前:132人目の素数さん mailto:sage [2015/11/18(水) 18:28:29.54 ID:ZGbh9dRh.net]
- お返事有難う御座います。
PDFのP13とP14からε(1)、ε‘(1)(=εd[1]), ε(2)、ε‘(2)は以下のように思います。 P9のε・ε=−1になるような“ε”が、具体的にどのような行列になるのか?解りません。 ε[1] = {0, 1, 0, 0}; ε[2] = {0, 0, 1, 0}; εd[1] = {0, Cos[theta], 0, Sin[theta]}; εd[2] = {0, 0, 1, 0};
- 80 名前:132人目の素数さん mailto:sage [2015/11/18(水) 20:55:04.92 ID:+rEnD0zr.net]
- >>78
>ε[1] = {0, 1, 0, 0}; >ε[2] = {0, 0, 1, 0}; >εd[1] = {0, Cos[theta], 0, Sin[theta]}; >εd[2] = {0, 0, 1, 0}; 各々について >P9のε・ε=−1 の意味での “ε[1]・ε[1]” 等を計算してみ
- 81 名前:132人目の素数さん mailto:sage [2015/11/19(木) 04:59:38.05 ID:DYBf4v7N.net]
- >>79
お返事有難う御座います。 各々について >P9のε・ε=−1 の意味での “ε[1]・ε[1]” 等を計算してみ 考えたのですが、ε=(0,ε)の定義というか意味が解らないです。 pi=(m,0)なら、電子の静止質量mとし、pi=(m,0,0,0,)とわかるのですが、 ε=(0,ε)なら、ε= {0, 1, 0, 0}を素直に入れると、ε= {0,0,1, 0, 0}になってしまいます。 またεは、スカラーや行列ではなく、ベクトルなら、ε・ε=−1になるのは,、下記のように虚数しかないと思います。 しかし、そうするとε[2]・ εd[2] =-1になってしまいます。 ε[1] = {0, I, 0, 0}; ε[2] = {0, 0, I, 0}; εd[1] = {0, I*Cos[theta], 0, I*Sin[theta]}; εd[2] = {0, 0, I, 0};
- 82 名前:132人目の素数さん mailto:sage [2015/11/19(木) 16:32:39.76 ID:RTjH01/q.net]
- >>80
太字は3次元空間のベクトルなんじゃないの > >>69のpdf
- 83 名前:132人目の素数さん mailto:sage [2015/11/20(金) 15:05:45.99 ID:iwwtB9CQ.net]
- お返事有難う御座います。
>>太字は3次元空間のベクトルなんじゃないの > >>69のpdf その通りです。解りました。 ε・ε=−1 ε'・ε'=−1 ε(1)・ε'(1)=CosΘ ε(1)・ε'(2)=ε(2)・ε'(1)=0 ε(2)・ε'(2)=1←この式は、(−1)の間違いでは無いでしょうか?PDFのP14の一番上の式 そうしますと、以下のmathematica programで、計算できるのですが、如何でしょうか? ep = (1/Sqrt[2])*{0, I, I, 0}; epdash = (I/Sqrt[2])*{0, -Cos[theta], 1, Sin[theta]}; Simplify[ep.ep] Simplify[epdash.epdash] (*分解*) ep1 = {0, I, 0, 0}; ep2 = {0, 0, I, 0}; epdash1 = {0, -I*Cos[theta], 0, I*Sin[theta]}; epdash2 = {0, 0, I, 0}; (ep1.epdash1)^2 + (ep2.epdash2)^2 + (ep1.epdash2)^2 + (ep2.epdash1)^2 Simplify[ep1.ep1] Simplify[ep2.ep2] Simplify[ep1.epdash1] Simplify[ep2.epdash2] Simplify[ep1.epdash2] Simplify[epdash2.ep1]
- 84 名前:132人目の素数さん mailto:sage [2015/11/20(金) 16:52:15.37 ID:5WwBOUNo.net]
- 4元ベクトルの「内積」とMathematicaの「.」演算は別ものだろうに
- 85 名前:132人目の素数さん mailto:sage [2015/11/20(金) 17:41:08.23 ID:iwwtB9CQ.net]
- ご指摘有難う御座います。
修正しました。これで如何でしょうか? g = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}; ep = (1/Sqrt[2])*{0, 1, 1, 0}; epdash = (1/Sqrt[2])*{0, -Cos[theta], 1, Sin[theta]}; Simplify[ep.g.ep] Simplify[epdash.g.epdash] (*分解*) ep1 = {0, 1, 0, 0}; ep2 = {0, 0, 1, 0}; epdash1 = {0, -Cos[theta], 0, Sin[theta]}; epdash2 = {0, 0, 1, 0}; Simplify[(ep1.g.epdash1)^2 + (ep2.g.epdash2)^2 + (ep1.g.epdash2)^2 + \ (ep2.g.epdash1)^2] Simplify[ep1.g.ep1] Simplify[ep2.g.ep2] Simplify[ep1.g.epdash1] Simplify[ep2.g.epdash2] Simplify[ep1.g.epdash2] Simplify[epdash2.g.ep1]
- 86 名前:132人目の素数さん mailto:sage [2015/11/20(金) 18:04:04.03 ID:iwwtB9CQ.net]
- -Cos[theta],は、間違いでしょうね。Cos[theta],が正しいはずです。
- 87 名前:132人目の素数さん mailto:sage [2015/11/20(金) 18:46:42.15 ID:iwwtB9CQ.net]
- これで、如何でしょうか?
Print["(*4元ベクトル*)"]; g4 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}; ep = (1/Sqrt[2])*{0, 1, 1, 0}; epdash = (1/Sqrt[2])*{0, Cos[theta], 1, Sin[theta]}; Simplify[ep.g4.ep] Simplify[epdash.g4.epdash] Print["(*3次元空間ベクトル分解*)"]; g3 = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; ep1 = {1, 0, 0}; ep2 = {0, 1, 0}; epdash1 = {Cos[theta], 0, Sin[theta]}; epdash2 = {0, 1, 0}; Simplify[(ep1.g3.epdash1)^2 + (ep2.g3.epdash2)^2 + (ep1.g3.epdash2)^2 \ + (ep2.g3.epdash1)^2] Simplify[ep1.g3.ep1] Simplify[ep2.g3.ep2] Simplify[ep1.g3.epdash1] Simplify[ep2.g3.epdash2] Simplify[ep1.g3.epdash2] Simplify[epdash2.g3.ep1]
- 88 名前:132人目の素数さん mailto:sage [2015/11/21(土) 12:30:55.01 ID:fraSz3dZ.net]
- こんにちは、
epdash = (1/Sqrt[2])*{0, Cos[theta], 1, Sin[theta]}; としますと、kdashとepdashの内積が、"0"になりません。 下記のどこが間違っているでしょうか? k0 = pi3; k1 = 0; k2 = 0; k3 = -pi3; kdash0 = pi3; kdash1 = -pi3*Sqrt[1 - z^2]; kdash2 = 0; kdash3 = -pi3*z; episilon0 = 0; episilon1 = (1/Sqrt[2])*1; episilon2 = (1/Sqrt[2])*1; episilon3 = 0; (*この部分は正しいでしょうか?*) episilondash0 = -1; episilondash1 = Sqrt[1 - z^2]; episilondash2 = 1; episilondash3 = z; (*-------------------------*) Simplify[episilondash0*episilondash0 - episilondash1*episilondash1 - episilondash2*episilondash2 - episilondash3*episilondash3] Simplify[episilon0*episilon0 - episilon1*episilon1 - episilon2*episilon2 - episilon3*episilon3] Simplify[kdash0*kdash0 - kdash1*kdash1 - kdash2*kdash2 - kdash3*kdash3] Simplify[episilondash0*kdash0 - episilondash1*kdash1 - episilondash2*kdash2 - episilondash3*kdash3] Simplify[episilon1*episilondash1 + episilon2*episilondash2 + episilon3*episilondash3]
- 89 名前:132人目の素数さん mailto:sage [2015/11/21(土) 15:12:04.06 ID:fraSz3dZ.net]
- www43.tok2.com/home/iq188/
この図の通り、計算したのですが、やはりダメです。 s = 2*k*pi + m^2; u = -2*kdash*pi + m^2; z = 1 + t/(2 *pi3^2); t = 2 m^2 - s - u; pi0 = (s + m^2)/(2 Sqrt[s]); pi1 = 0; pi2 = 0; pi3 = (s - m^2)/(2 Sqrt[s]); pf0 = pi0; pf1 = pi3*Sqrt[1 - z^2]; pf2 = 0; pf3 = pi3*z; k0 = pi3; k1 = 0; k2 = 0; k3 = -pi3; kdash0 = pi3; kdash1 = -pi3*Sqrt[1 - z^2]; kdash2 = 0; kdash3 = -pi3*z; episilon0 = 0; episilon1 = (1/Sqrt[2])*1; episilon2 = (1/Sqrt[2])*1; episilon3 = 0; (*この部分は正しいでしょうか?*) episilondash0 = 0; episilondash1 = (1/Sqrt[2])*Sqrt[1 - z^2]; episilondash2 = (1/Sqrt[2])*1; episilondash3 = (1/Sqrt[2])*z; (*----------------------*) Print["(*この値は"0"になる*)"]; Print[Simplify[episilon0*k0 - episilon1*k1 - episilon2*k2 - episilon3*k3]]; Print[Simplify[episilondash0*kdash0 - episilondash1*kdash1 - episilondash2*kdash2 - episilondash3*kdash3]]; (*Print[Simplify[episilondash1*kdash1+episilondash2*kdash2+episilondash3*kdash3]];*) Print[Simplify[episilon0*pi0 - episilon1*pi1 - episilon2*pi2 - episilon3*pi3]]; Print[Simplify[episilondash0*pi0 - episilondash1*pi1 - episilondash2*pi2 - episilondash3*pi3]]; Print[Simplify[k0*k0 - k1*k1 - k2*k2 - k3*k3]]; Print[Simplify[kdash0*kdash0 - kdash1*kdash1 - kdash2*kdash2 - kdash3*kdash3]]; Print["(*この値は"-1"になる*)"]; Print[Simplify[episilon0*episilon0 - episilon1*episilon1 - episilon2*episilon2 - episilon3*episilon3]]; Print[Simplify[episilondash0*episilondash0 - episilondash1*episilondash1 - episilondash2*episilondash2 - episilondash3*episilondash3]];
- 90 名前:132人目の素数さん mailto:sage [2015/11/23(月) 13:14:06.17 ID:8rcLFYdN.net]
- >>87
>kdash1 = -pi3*Sqrt[1 - z^2]; >kdash2 = 0; >kdash3 = -pi3*z; と >episilondash1 = Sqrt[1 - z^2]; >episilondash2 = 1; >episilondash3 = z; が直交するはずだと思ってるの?
- 91 名前:132人目の素数さん mailto:sage [2015/11/24(火) 10:48:12.96 ID:4ii4n/VM.net]
- お返事有難う御座います。
>が直交するはずだと思ってるの? その通りだと思い、計算していました。 下記HPの「mathematica」をクリック願います。 計算結果が表示します。 www43.tok2.com/home/iq188/ いま、PDFのP8の3行目 members3.jcom.home.ne.jp/nososnd/qed/comp.pdf ”p・? = p・?′ = 0(実験室系なので)になるので ” という文から、そもそも以下(重心系)を、実験室系に変更しないと計算(piε=pfε'=0)が合わないのでは? と考えてます。従いまして、現在 s = 2*k*pi + m^2; u = -2*kdash*pi + m^2; z = 1 + t/(2 *pi3^2); t = 2 m^2 - s - u; pi0 = (s + m^2)/(2 Sqrt[s]); pi1 = 0; pi2 = 0; pi3 = (s - m^2)/(2 Sqrt[s]); pf0 = pi0;←(この形は、重心系) pf1 = pi3*Sqrt[1 - z^2];←(この形は、重心系) pf2 = 0; pf3 = pi3*z;←(この形は、重心系) k0 = pi3; k1 = 0; k2 = 0; k3 = -pi3; kdash0 = pi3; kdash1 = -pi3*Sqrt[1 - z^2]; kdash2 = 0; kdash3 = -pi3*z; osksn2.hep.sci.osaka-u.ac.jp/~naga/kogi/konan-class04/ch6-qed.pdf のP4を元に、以前教えて頂いた重心系を、実験室系に変更したいのですが、解らず困っています。
- 92 名前:132人目の素数さん mailto:sage [2015/11/24(火) 10:50:01.46 ID:4ii4n/VM.net]
- すいません。文字化けです。
”p・イプシロン = p・イプシロン′ = 0(実験室系なので)になるので ”
- 93 名前:132人目の素数さん mailto:sage [2015/11/24(火) 10:57:39.85 ID:4ii4n/VM.net]
- すいません。また間違えました。
pi0 = (s + m^2)/(2 Sqrt[s]);←(この形は、重心系) pi1 = 0; pi2 = 0; pi3 = (s - m^2)/(2 Sqrt[s]);←(この形は、重心系) pf0 = pi0; pf1 = pi3*Sqrt[1 - z^2]; pf2 = 0; pf3 = pi3*z;
- 94 名前:132人目の素数さん mailto:sage [2015/11/24(火) 13:46:18.18 ID:4ii4n/VM.net]
- 実験系を計算しました。下記は如何でしょうか?
正しいでしょうか? s =.; u =.; z =.; t =.; (*u=-2*k*q+m^2; t=2 m^2-s-u; z=1+t/(2 *k3^2); w=1+u/(2 *k3^2);*) k0 = (s - m^2)/ Sqrt[s]; k1 = 0; k2 = 0; k3 = -(s - m^2)/ Sqrt[s]; p0 = m; p1 = 0; p2 = 0; p3 = 0; j0 = (s - m^2)/(2 Sqrt[s]); j1 = -(s - m^2)/(2 Sqrt[s])*Sqrt[1 - w^2]; j2 = 0; j3 = (s - m^2)/(2 Sqrt[s])*w; q0 = (s + m^2)/(2 Sqrt[s]); q1 = (s - m^2)/(2 Sqrt[s])*Sqrt[1 - z^2]; q2 = 0; q3 = (s - m^2)/(2 Sqrt[s])*z; Print["(計算確認*)"]; p = p0*p0 - p1*p1 - p2*p2 - p3*p3; q = q0*q0 - q1*q1 - q2*q2 - q3*q3; k = k0*k0 - k1*k1 - k2*k2 - k3*k3; j = j0*j0 - j1*j1 - j2*j2 - j3*j3; Print["(*0になる*)"]; Simplify[(p + k)^2 - (j + q)^2] Simplify[(p - q)^2 - (k - j)^2] Simplify[(p - j)^2 - (q - k)^2] Simplify[k] Simplify[j] Print["(*mになる*)"]; Simplify[p] Simplify[q] s = m^2; Print["(*0になる*)"]; Simplify[p + k - j - q] Simplify[k3 - (j3 + q3)](*z軸のつり合い*) Simplify[j1 - q1](*y軸のつり合い*)
- 95 名前:132人目の素数さん mailto:sage [2015/11/24(火) 17:03:44.05 ID:D/YnhDfb.net]
- >>93
sってどんな量?
- 96 名前:132人目の素数さん mailto:sage [2015/11/24(火) 17:36:26.29 ID:4ii4n/VM.net]
- お返事有難う御座います。
members3.jcom.home.ne.jp/nososnd/field/mand.pdf のP2の下から6行目の式です。 結局、 Simplify[j*q] Simplify[p*k] は、”0”ですから、s=m^2ではないでしょうか?
- 97 名前:132人目の素数さん mailto:sage [2015/11/24(火) 17:45:52.98 ID:D/YnhDfb.net]
- >>95
s=m^2 なら >k0 = (s - m^2)/ Sqrt[s]; >k1 = 0; >k2 = 0; >k3 = -(s - m^2)/ Sqrt[s]; >j0 = (s - m^2)/(2 Sqrt[s]); >j1 = -(s - m^2)/(2 Sqrt[s])*Sqrt[1 - w^2]; >j2 = 0; >j3 = (s - m^2)/(2 Sqrt[s])*w; は全部ゼロになるが、そういう計算をやりたいの?
- 98 名前:132人目の素数さん mailto:sage [2015/11/24(火) 18:59:47.16 ID:4ii4n/VM.net]
- お返事有難う御座います。
>は全部ゼロになるが、そういう計算をやりたいの? 違います。 すいません、入口が解らないです。 members3.jcom.home.ne.jp/nososnd/qed/comp.pdf のP4の下から、8行目に、pi^2=pf^2=m^2,k^2=0とあります。 k^2= k0*k0 - k1*k1 - k2*k2 - k3*k3 は、実験室系でも、”0”になるのでしょうか? 最初は、 k0 = Sqrt[s] - m; k1 = 0; k2 = 0; k3 = (Sqrt[s] - m); p0 = m; p1 = 0; p2 = 0; p3 = 0; でよろしいでしょうか?
- 99 名前:132人目の素数さん mailto:sage [2015/11/25(水) 11:19:41.36 ID:UERObkTV.net]
- k0 = Sqrt[s] - m;
k1 = 0; k2 = 0; k3 = (Sqrt[s] - m); p0 = m; p1 = 0; p2 = 0; p3 = 0; s = Simplify[2*(p*k) + m^2] で、s=m^2になってしまいます。 すると、k0 = wとか、新しい変数を使う必要があるのでしょうか? すると、実験室系では、重心系のように Simplify[y3 //. {p1 -> 0, p2 -> 0, k0 -> p3, k1 -> 0, k2 -> 0, k3 -> -p3, q0 -> p0, q1 -> p3*Sqrt[1 - z^2], q2 -> 0, q3 -> p3*z, j0 -> p3, j1 -> -p3*Sqrt[1 - z^2], j2 -> 0, j3 -> -p3*z, p0 -> (s + m^2)/(2 Sqrt[s]), p3 -> (s - m^2)/(2 Sqrt[s]), z -> 1 + t/(2 p3^2), t -> 2 m^2 - s - u}] とか、纏められるのでしょうか?
- 100 名前:132人目の素数さん mailto:sage [2015/11/25(水) 15:16:08.17 ID:Qdnl0bDq.net]
- >>98
前スレより再録 >全然理解してないって昔から指摘されてるのに、全く進歩しないねぇ >「ローレンツ不変量」とか知らんのだろう? >特殊相対論を勉強するところから。 >デタラメやる前にちっとは勉強したら >特殊相対論の勉強を頑に拒むのはなぜ?
|

|