- 652 名前:132人目の素数さん mailto:sage [2016/07/08(金) 18:04:18.17 ID:+GqLshVo.net]
- >>619
let a+b+c=s, then (a+b)(b+c)(c+a) ≧ (8/9)s(ab+bc+ca) ≧ (4s/3)^(3/2)・√(abc), Left: (a+b)(b+c)(c+a) - (8/9)s(ab+bc+ca) = (1/9){(a+b+c)(ab+bc+ca) - 9abc} = (1/18){a(b-c)^2 + b(c-a)^2 + c(a-b)^2} ≧0 Right: (ab+bc+ca)^2 - 3s(abc) = (ab+bc+ca)^2 - 3(ab・bc + bc・ca + ca・ab) = (1/2){aa(b-c)^2 + bb(c-a)^2 + cc(a-b)^2} ≧0, ∴k=(4/3)^(3/2).
|

|