- 439 名前:デフォルトの名無しさん mailto:sage [2012/04/22(日) 03:08:51.40 ]
- 半径がr(>0)の球面のパラメータ表示を利用して、球面の面積を求めよ、と言う問題です。面積をSとしたときに S=4πr^2 に帰着するように、式を展開したいです。そのパラメータ表示は、
1. P(u,v)=(r cosu cosv, r cosu sinv, r sinu) 2. Q(x,y)=(x, y, ±r^2-√(x^2-y^2) ) 3. Φ(u,v)=(√(r^2-v^2) cosu, √(r^2-u^2) cosv, v) の3つです。 1.の場合だと、面積要素|Pu×Pv|(偏微分同士の外積)を求めて、それをuとvで二重積分すれば良いんですよね? ∬|Pu×Pv|dudv になると思うのですが・・・。 その際に、積分範囲は、どのようになるのでしょうか。どなたか、教えてください。お願いします。
|

|