[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 10/10 00:15 / Filesize : 342 KB / Number-of Response : 1029
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

関数型プログラミング言語Haskell Part33



774 名前:デフォルトの名無しさん mailto:sage [2021/02/25(木) 20:48:36.35 ID:zWeVIvWn.net]
ある対象がモノイドかどうかを問う質問です。

2つのリストのうち要素の少ない方のリストをそのまま返す、
同じ要素数ならば左側のリストをそのまま返す関数 f :: [a] -> [a] -> [a] があるとします。
ここで、ある型aのリスト全体の集合[a]と、その上の二項演算fとの組([a], f)はモノイドを成すでしょうか。

私は次のように、これはモノイドではないと考えます。

このモノイド性を考えるとき、その単位元の候補として、
もし集合に無限リストを含めないのならば最大要素数のリストを、
無限リストを含めるのであれば無限リストを取ります。
他に考えようがありません。

しかし、どちらにしても単位元の一意性が証明できません。
xs、ys 共に最大要素数のリスト、あるいは無限リストであり、かつ xs /= ys を満たすものは(型aによっては)いくらでもあります。

よって、([a], f) はモノイドではないと考えますが、これは正しいでしょうか。

モノイドの定義に照らし合わせるのではなく、
モノイドならば証明できるであろう定理が証明できないことに因っているのが、
なんとも気持ち悪いのですが・・・

そもそもモノイド性を問うには ([a], f) の定義が曖昧なのでしょうか。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<342KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef