[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 01/04 22:35 / Filesize : 243 KB / Number-of Response : 1035
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

【統計分析】機械学習・データマイニング20



1 名前:デフォルトの名無しさん mailto:sage [2018/08/07(火) 18:56:37.59 ID:sGPH9ejna.net]
機械学習とデータマイニングについて何でもいいので語れ若人

※ワッチョイだよん

次スレ立ての際は、一行目冒頭に
!extend:on:vvvvv:1000:512つけてね

■関連サイト
機械学習の「朱鷺の杜Wiki」
ibisforest.org/
DeepLearning研究 2016年のまとめ
qiita.com/eve_yk/items/f4b274da7042cba1ba76

■前スレ
【統計分析】機械学習・データマイニング19
mevius.2ch.net/test/read.cgi/tech/1520586585/
VIPQ2_EXTDAT: default:vvvvv:1000:512:----: EXT was configured

830 名前:デフォルトの名無しさん [2018/10/19(金) 01:55:24.05 ID:heGbLBdq0.net]
>>760
言い忘れたけど,人以外の物体が何を指すのかよく分からないけど
人が写って無い道路の画像で学習させるのが一般的だと思うよ.
それ以外の画像だと潜在空間における人とotherの距離が不明になるし辞めた方がいいよ

831 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 05:34:08.20 ID:8J26xkWMa.net]
もう完全に教えてちゃんスレになったなw 立ち寄る必要なさそうだ

832 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 05:50:40.44 ID:rn6AXKJQd.net]
課題をただで人に聞きまくって何とかしたいという日本人のテンプレ。わりと良くいる

833 名前:デフォルトの名無しさん [2018/10/19(金) 06:33:27.67 ID:heGbLBdq0.net]
研究を議論したいなあ,だれかスレ作って

834 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 07:35:08.81 ID:/W+GDYNa0.net]
AIっていかに論文をたくさん読んで、どれだけパクるかの勝負じゃん

835 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 07:37:52.55 ID:568QDdW/a.net]
どんな分野でも基本は既存研究の発展で、ごく稀に全く新しい発明が登場するものだ

836 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 09:32:23.71 ID:TrVy4dze0.net]
研究と応用の距離が近いのね

837 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 13:50:41.29 ID:R1ndva0Ba.net]
>>797
なるほど、凄く答えに近いこと聞いた気がします。
アクティベートをシグモイドにするだけでその挙動が得られるのですか?
条件反射でソフトマックス使ってたので盲点でした。
少し試してみます。

838 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 13:56:34.41 ID:R1ndva0Ba.net]
>>798
なるほどそういうものなのですね。
しかし疑問なのが、どうして犬を検出する検出器は学習させることが出来るのに
犬の画像が入力された時だけ1を返すネットワークを学習させることができないかです。
明らかに後者の方が簡単なように思うのですが。。
お詳しそうなのでよければ教えていただけませんか?



839 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 14: ]
[ここ壊れてます]

840 名前:13:06.61 ID:LAG8930r0.net mailto: >>807
パラメーター変えてみました、別のに応用して見ましたということかw
[]
[ここ壊れてます]

841 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 14:15:57.11 ID:gl4kTOSHd.net]
>>809
機械学習の一般論として、なにかを判定するには教師データとして正例と負例をおなじ数だけ与えるのが基本でしょう
「googleが猫を検出するDNNを作った」事例がよく取り上げられるけど、あれだって大量の猫画像とそうでない画像を与えている

842 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 14:38:27.78 ID:TrVy4dze0.net]
>>810
そこまでは言ってない。
ダークマターの質量が判りました。ってのより基礎研究の利用が応用に近いなあと

843 名前:デフォルトの名無しさん [2018/10/19(金) 15:33:05.18 ID:pogP5zPXr.net]
>>809
前者は1000クラスの分類器がベースになってる
日常的に身の回りにある物は大体この1000クラスに含まれるので犬を(も)検出できる
当然その1000クラス以外が入力された時にどうなるか保証はない
後者は犬以外のどんな画像が入力されても0を返すのが難しい
これは犬以外に対応する潜在空間が圧倒的に広いから

でもまあ実用的には1000クラス分類器の流用で十分な気もするな

844 名前:デフォルトの名無しさん [2018/10/19(金) 15:55:18.03 ID:7FKkwhq/0.net]
>>805

> AIっていかに論文をたくさん読んで、どれだけパクるかの勝負じゃん

ということは、AIが何か知っているんか?
じゃ、AIとは何か言ってみ?

845 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:05:15.03 ID:x0p9L0oV0.net]
>>812
難しいことご存知でw

846 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:20:57.94 ID:JhfkDMcM0.net]
絵描き
「性的対象判定機にこの白黒の線画を判定させたらすごいスコアでた!」

847 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:54:39.13 ID:R1ndva0Ba.net]
>>813
なるほど。。
それなら素人考えですと、
imagenetの画像を犬とそれ以外の2クラスに分けて
2クラス分類で学習させたネットワークは
その検出器と比べて認識力ではほぼ等価と見なせますか?

848 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:59:37.79 ID:R1ndva0Ba.net]
>>811
なるほど。
ではそのように猫だけを検出するネットワークを作りたいとしたら、
ネガティブとしてどんな画像を与えるのですか?
上の方も言ってる通り潜在空間が広すぎると思うのですが、
例えばimagenetの猫以外の画像を全てネガティブとして1クラスに押し込んで特徴って捉えれるのですか?



849 名前:デフォルトの名無しさん [2018/10/19(金) 17:18:26.23 ID:pogP5zPXr.net]
>>817
普通にそれをやると犬以外のデータが圧倒的に多いので多分上手くいかない
何も考えず全て犬以外に分類するだけで正解率99.9%を達成できるので、単純に分類誤差最小化で学習するとそうなる
学習済みネットワークの出力を加工するかファインチューニングするのがいいと思う

850 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 17:38:40.69 ID:R1ndva0Ba.net]
>>819
なるほど、、ためになります。
そういう実用的な事が書いてある書籍か何かありませんか?
ディープラーニングの本いろいろみて回ったのですが、
理論(数式)責めでドヤってる本か、
ネット見れば分かる程度の初歩的な実装方法書いたような本しかなくて困ってるのですが・・
欲しいのは数式でもチュートリアルでもなく実用性のあるものなのですが。
これ1冊あれば数式読まなくてもモデル選定からチューニングのコツまで分かるみたいな本ないですか?

851 名前:デフォルトの名無しさん [2018/10/19(金) 17:55:39.31 ID:pogP5zPXr.net]
>>820
そんなうまい話ないぞ
学習したいデータや問題毎に色々な試行錯誤がある
仮に望むような本があって表面だけなぞったとしても同じ悩みにぶつかるよ

852 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 18:30:36.19 ID:aSQ6R7eH0.net]
今CycleGANの学習をCPUでやってる
何時間かかるんだろう・・・。

853 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 18:39:27.03 ID:NZMDXKZv0.net]
cycleganは夢が広がるほど万能感あるけど実際はなかなか上手く学習しない

854 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 20:03:10.47 ID:aSQ6R7eH0.net]
>>823
形状を変化させるのは苦手みたいだね
テクスチャ系なら上手くできる

それにしてもCPUで1時間半やったけど1エポックも進まないわ・・・

855 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 21:18:55.91 ID:TlirwEgq0.net]
>>818
そういうこと(猫画像とそれ以外画像とに分ける)で学習してる例が多いと思うけどね。ただ指摘があるように正例と負例の数は揃えないと。
あなたが実際にその分類器を使う段階になって、猫以外の画像としてどういうものが入力されるのか? それに近い分布のものを負例としなきゃ

「仕事ではじめる機械学習」あたり読んでみては(自分は読んでないけどw)

856 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 22:14:56.20 ID:R1ndva0Ba.net]
>>821
まあそうですよね。
でもいかんせん素人だと何をどう試行錯誤していいかすら分からないので
行き詰まった時に試してみるチェックリストみたいな感覚で使いたいのですが・・

857 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 22:16:47.09 ID:R1ndva0Ba.net]
>>825
ありがとうございます。
入力に近い分布のものなら1クラスにまとめて放り込んでも大丈夫なんですね。勉強になりました
本もチェックしてみます。

858 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 22:17:32.42 ID:TrVy4dze0.net]
誰かコンサルしてあげなきゃ。素人が機械学習使えないだけなのに機械学習自体が評価されなくなる未来が見える



859 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 23:05:52.00 ID:dup5d98D0.net]
https://towardsdatascience.com/build-your-first-deep-learning-classifier-using-tensorflow-dog-breed-example-964ed0689430

上記のリポジトリ
https://github.com/udacity/dog-project

860 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 23:52:54.51 ID:heGbLBdq0.net]
>>820
数式から逃げるな。
機械学習の数学程度でうろたえてるようじゃ人生きついぞ

861 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 00:58:23.13 ID:2DsZDK0Sa.net]
正例と負例の訓練データ数が全く桁違いの場合って割と多いと思うんだけど
例えば機械の故障判定とか製品の不良判定とか、正常データが大量にあって異常データは僅かになるのが典型的
その場合全て正常と判定するモデルの正解率は高くなるが、混同行列見たりF1値を評価指標にすればそんなのは非常に悪い学習結果と判断できるから排除できる

862 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 13:39:51.48 ID:MvoUANTC0.net]
Macbook ProのCore i7 CPUで半日やったが、
1エポックしか学習できなかったわ
Geoforce GTX 1080 Ti買うことにした
27万ぐらいするけどもっと安く買えねーかな

863 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:25:47.62 ID:d68y9Vxsa.net]
MacBookProなら一応グラフィックカード付いてるはずだけど呼び出せてなくない?
2016年モデルだけどついてるよ、スペックはお情け程度かもしれないけど

864 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:36:17.04 ID:d68y9Vxsa.net]
>>830
理解出来ない訳では無いですけど無駄手間じゃないですか?
ただツールとして使いたいだけで理論を開発しようって訳ではないので(そもそも数式には興味ない)、
数式見るのは研究者がやればいいと思うのですが。
ガウシアンぼかしの式すら知らない素人でもリファレンス見て試行錯誤で華麗にフォトショップ使いこなしますよね?
あんな感じに早くなればいいと思うこの頃です

865 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:48:12.80 ID:n6bj2eyUM.net]
proでもディスクリートGPUが載ってるかどうかはモデルによる。

866 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:55:13.15 ID:jHhEz0TNM.net]
>>834
それはない。数式読まずに避けてたら本質は理解できない

867 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:58:22.99 ID:yNArAPz00.net]


868 名前:定のものを認識させて物理空間上の位置(座標)を出力値とする場合って
SSDやYoloのような物体認識を使った方が早いかな?

>>883
882が何のライブラリを使ってるか知らんけど、tensorflowのMac版はCPUしか対応してない
[]
[ここ壊れてます]



869 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 17:04:33.60 ID:V8iNamHla.net]
最先端の研究結果の数式が必ずしも理解できる必要はないが
機械学習の基礎になる線形回帰、ロジスティック回帰、ニューラルネットワークの全結合層の原理程度は分かっていなければ厳しい
これが理解できていなければ自分の手持ちデータで何かやろうにもどんな手法を使うべきか見当も付けられず、
名前を知ってるものを適当に使ってみて精度が良かった・悪かった、と錬金術的にやるしかなくなる

870 名前:デフォルトの名無しさん [2018/10/20(土) 17:09:48.35 ID:gp/trlhl0.net]
機械学習ではな
自分よりお利口なもんはできない

まず自分がなんでバカで頭悪いかを考えたほうが有意義だからな

バカのくせになんで自分よりお利口なもんができると思うのか
そこが不思議でならない

871 名前:デフォルトの名無しさん [2018/10/20(土) 17:17:07.08 ID:gp/trlhl0.net]
バカでなければ
どうやったら自分が効果的に学習できるか考えるからな

自分が効果的な学習ができないのに
計算機で効果的な学習とかまずムリ

872 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 17:42:16.87 ID:aRbeGa2e0.net]
以上、バカの主張でした

873 名前:デフォルトの名無しさん [2018/10/20(土) 18:39:36.65 ID:AUqXYm6Fa.net]
>>834
フォトショップを知識がなくても使いこなせるのはアルゴリズムが成熟していて大半の処理は裏方で自動でこなしてくれてるから
機械学習では自動で問題毎に自動で最適な処理をできる技術がまだ確立されていないから、ツール的に軽く触っただけで良い結果を得るのは難しいよ

874 名前:デフォルトの名無しさん [2018/10/20(土) 18:49:17.27 ID:gp/trlhl0.net]
知識って。。。
画像処理ソフトとか画像データのピクセル加工やってるだけやんけ

で、見た目がそうなってる
とりあえず見た目こんな感でいいや

コレを機械学習と同じと思ってる時点でもうね

875 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 20:39:27.85 ID:k0LrzqP2a.net]
>>836
本質を理解しようとはあまり思っていませんね。
とりあえずツールとしてラクチンに使えたらそれだけでよいので・・
>>837
そうだったんですね、自分winでブートしてるのでそれは知りませんでした。
>>838
そうなんですよ、そこなのです。
だから手持ちデータとやりたいこと等から使うべき手法やモデルを教えてくれる本とかがあればいいんですけどねえ

876 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 20:44:45.92 ID:k0LrzqP2a.net]
>>842
そうですよね。
だから最適な処理を見つけるためのバイブル的なものがあればなあと思っています。

>>843
本質的にはあまり変わらないと思うのですが。
上の人が言っている通り自動化する技術が確立されていないだけで、
学習自体はデータに対して同じ処理を繰り返してるだけですし、
フォトショップでいう見た目=テストaccなりlos、という感じで使えても悪くないと思いますし
最近でいうならそれこそGANなんて見た目だけの話なのでとりあえずこんな見た目でいいや、で解決すると思います。

877 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 21:05:27.07 ID:xvv7H8Vz0.net]
それはそうかもしれないがそうだとするとプログラム板の話題ではなくなるな

878 名前:デフォルトの名無しさん [2018/10/21(日) 03:09:43.34 ID:yA/rLZti0.net]
まあ発展途上よな
実用も含めて



879 名前:デフォルトの名無しさん [2018/10/21(日) 05:50:34.84 ID:MsXt9/J70.net]
>>845
>だから最適な処理を見つけるためのバイブル的なものがあればなあと思っています。
これは最先端の研究なので論文を読んでパラメータの設定はどうするとか学ぶ必要がある.
いくら機械学習の出版が早いとはいえ待ってたら2,3年は遅れた知識になる.

後結局手法はAutoMLとかで大体今でも自動化できてるんだけど,データから推定した結果の解釈とかの問題もあるし,
全部が全部バイブル通り行くとは行かないのが現実.「全てのモデルは間違ってる.完全なる解釈はない」というのが統計学の鉄則だよ

880 名前:デフォルトの名無しさん [2018/10/21(日) 05:53:12.18 ID:MsXt9/J70.net]
赤池先生の経歴をと尊敬を持って機械学をやるべきだと僕は思ってる.

汎化誤差の最小化だけじゃあまりにもつまらないし.最近のAmazonの差別AIみたいなのができるのが落ち.
未来はどうなるか分からないけど数式から逃げることはできないと覚悟した方が良いと思う.

881 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 08:11:33.22 ID:UfdBUaGe0.net]
lossの定義の仕方さえ分かれば良いだけの話だろ
昔なんか自動微分を手前で実装してたんだぞ

882 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 08:40:17.71 ID:Cf36qMnJM.net]
>>833
俺のは2018モデルだけどNVIDIAだったかな?

あと
2080 Tiの方がコスパ高い
https://i.imgur.com/SfoNEyI.png

883 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 08:54:49.06 ID:Cf36qMnJM.net]
あー最新版TensorflowではmacのGPUサポートしてないわ

884 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 09:46:27.36 ID:IzQUIvSq0.net]
>>849
AICはねw

885 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 10:11:18.91 ID:MsXt9/J70.net]
最近edX初めてめっちゃいいよな

886 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 10:24:19.90 ID:Pb7O8TaX0.net]
courseraの"How to Win a Data Science Competition: Learn from Top Kagglers"っての始めたけど、
これはムズいわ

まず、ロシア人が何を言ってるのか聞き取れない

887 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 10:38:57.18 ID:MsXt9/J70.net]
ロシア語はきついわ

888 名前:デフォルトの名無しさん [2018/10/21(日) 11:29:45.72 ID:sjXodBVwF.net]
>全部が全部バイブル通り行くとは行かないのが現実.「全てのモデルは間違ってる.完全なる解釈はない」

ほんそれ



889 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 13:35:30.75 ID:Ya81v9Q1a.net]
>>848
最先端のネットワークはモチロンそうでいいと思うのですが、
DropoutやらReLUとか組み込んだCNNならもう流行りだして2,3年は経ってると思うので
それくらいの構造のCNNでimagenetのような分類タスクしようと思った時にモデル選定とかどうチューニングしたらいいとかある程度まとめてくれてるような書物があったらいいなと思いました。

890 名前:デフォルトの名無しさん [2018/10/21(日) 14:04:50.88 ID:MsXt9/J70.net]
>>858
あるのでは

891 名前:デフォルトの名無しさん [2018/10/21(日) 14:07:48.83 ID:MsXt9/J70.net]
最近の書籍だと直感ディープラーニングとか

892 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 16:57:03.15 ID:SdRIg5RYa.net]
あれこれ楽すること考える前にCourseraの有名な機械学習コースのシラバスの各項目をざっくりとでも他人に説明できないレベルならCourseraやるのが一番手っ取り早い

893 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 17:34:54.29 ID:fxS7+DP10.net]
Coursera教に入信すれば救われます

894 名前:デフォルトの名無しさん mailto:sage [2018/10/22(月) 13:50:58.13 ID:DttoQmKL0.net]
なんかスレ面白くなくなったな

895 名前:デフォルトの名無しさん mailto:sage [2018/10/22(月) 14:08:49.04 ID:hF2/Is9u0.net]
じゃ、chainerの話でもするか!
日本の会社なのに公式に日本語ドキュメントがないやん、とか

896 名前:デフォルトの名無しさん mailto:sage [2018/10/22(月) 14:26:31.01 ID:DttoQmKL0.net]
>>864
世界を狙っとるんやない?

897 名前:デフォルトの名無しさん [2018/10/22(月) 14:37:01.74 ID:zvg+yeJrr.net]
CEATECでPFNが出してた片付けロボットすごいよな

898 名前:デフォルトの名無しさん mailto:sage [2018/10/22(月) 14:48:12.27 ID:go7C76bPa.net]
いい感じのクロスモーダルモデル考えたけど適用事例が思い付かない



899 名前:デフォルトの名無しさん [2018/10/22(月) 19:35:15.84 ID:M3H01wI/p.net]
>>866
物体検出、物体判別、位置特定は他の所でも出来るんじゃね?
その正確さとかが実用になるかどうかだろうけど

900 名前:デフォルトの名無しさん [2018/10/22(月) 19:59:52.03 ID:8nbAtIu2a.net]
>>868
それらを現実世界のロボットの動作に結びつけるのは難しい
あと口頭で指示も出せるらしい

901 名前:デフォルトの名無しさん mailto:sage [2018/10/22(月) 22:45:23.68 ID:IVZcl8cFa.net]
PFNロボのアピールポイント:
・衣類の画像認識ができる(衣類、布は置き方によって形状が大きく変わるため難度が高かった)
・対象によって掴む位置、掴み方を変える(けん玉は棒の部分を掴むなど)
・日本語の命令に従い行動できる
・ラフな言い方、ジェスチャーを認識できる(指差しながら「あそこに片付けて」で認識できる)
・展示会の騒音、変化する照明環境で1日連続稼働できる

902 名前:デフォルトの名無しさん [2018/10/23(火) 09:47:19.57 ID:ruDoWt35p.net]
どこもかしこも画像データを扱う事を前提として文章書いてるから嫌になってくる

903 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 10:02:16.82 ID:2OPbXDwm0.net]
二ーズは疑問だけど、頭の固い機械制御の業界には良い刺激

904 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 10:19:26.64 ID:bd7/TlGt0.net]
緩い機械制御(LOL)

905 名前:デフォルトの名無しさん [2018/10/23(火) 10:59:29.01 ID:2b6Tbph30.net]
メリットが分かりやすい分野で教科書書いたら、参入者が増えるから先行者は嫌がるもの

906 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 12:17:00.88 ID:MT32asC/a.net]
先行者が新規参入嫌うって、オープンソース化で新規参入増やすことで急速に技術の新陳代謝促すことで発展しているIT業界を逆行しているようだ

907 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 14:24:49.91 ID:pUmb/2Nb0.net]
今んとこわかってるAIのメリットってなによ

908 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 14:36:44.37 ID:xBougz0l0.net]
マスゴミが商品の宣伝してくれる



909 名前:デフォルトの名無しさん [2018/10/23(火) 14:47:39.15 ID:cio3imcuM.net]
>>876
人の作った定石を覆す一手が生まれる可能性がある

910 名前:デフォルトの名無しさん [2018/10/23(火) 14:51:30.72 ID:gBK/KF1nr.net]
>>876
人にしか出来ないと思われていた高度な処理が可能になった

911 名前:デフォルトの名無しさん [2018/10/23(火) 14:53:00.00 ID:yFsvvFWj0.net]
ゲームで定石以外の手を打つAIはいるけど
脳外科手術とかで定石以外の手をAIに指示されて
実際その通りに手術出来る医者っているのかな

912 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 15:04:50.59 ID:bagxQGHJa.net]
手術の機械学習って学習データどうするんだ?
医療では当面は診断用途だろう
怪しい所を自動ピックアップしてくれるから楽になる

913 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 19:11:15.08 ID:BDP8ufz9a.net]
全く同じ条件の学習が上手くいかなくなったんだけど原因は何が考えられますか
1回目やったときは70epochでvalのaccが.95くらいだったのに
2回目やったら1epochからずっとvalのaccが.65前後のままtrainのaccだけが上がり続けるから過学習してると思うんですけど
実行毎に過学習起きたり起きなかったりとかあり得ますか?

914 名前:デフォルトの名無しさん [2018/10/23(火) 21:06:52.05 ID:2b6Tbph30.net]
重みの初期化はどうしてるの?

915 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 21:48:04.91 ID:nb50ik1P0.net]
みんなすげぇなぁ
機械学習の本まずは1冊やり終えたけどここで話されてる内容ほとんど分からん

916 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 22:19:45.80 ID:BDP8ufz9a.net]
>>883
inceptionv3のimagenetです

917 名前:デフォルトの名無しさん mailto:sage [2018/10/23(火) 23:35:10.13 ID:7LErHcLzp.net]
データ分析の基礎的な部分をちゃんと身につけないとと思って統計の勉強始めた
学のある人なら当たり前に知ってる事なんだろうけど自分には知らない事ばかりで結構面白いって感じた
多分最初だからこう思うだけかもしれないけど

918 名前:デフォルトの名無しさん [2018/10/23(火) 23:44:40.12 ID:EZC/vVVWa.net]
>>884
特にディープラーニング関連は本になる頃には陳腐化してるからなぁ
ある程度基礎を勉強したらネットで解説記事とかトップカンファレンスの速報まとめとか有名な論文(の解説)とかを読むと良いかも



919 名前:デフォルトの名無しさん mailto:sage [2018/10/24(水) 05:47:43.50 ID:kJsLSWt60.net]
脳から就活生の傾向を調べるって怪しすぎてワロタ。

920 名前:デフォルトの名無しさん mailto:sage [2018/10/24(水) 08:56:06.97 ID:ljKXe/5ha.net]
>>884
ここで話されてる内容はもうかなり古くて、だからレスする人も減ってる

921 名前:デフォルトの名無しさん [2018/10/24(水) 14:10:20.50 ID:wUNs4a59F.net]
統計は高校で習ったから高卒「でも」充分理解できるもんだと思ってたが
最近の高卒は統計習ってないのもいるんだね

922 名前:デフォルトの名無しさん [2018/10/24(水) 14:28:42.96 ID:+JXZmafPr.net]
>>890
統計っても機械学習だとロジスティック回帰とか主成分分析とかカーネル法あたりだろう
高校じゃまずやらない

923 名前:デフォルトの名無しさん mailto:sage [2018/10/24(水) 16:06:02.78 ID:anPZCCeda.net]
kerasでGPUを使う時に
最初のプロパティみたいなので
totalが4GBあるのにfreeが3.2GBしかありません
4GB全部をkerasで使うためにはどうすればいいですか

924 名前:デフォルトの名無しさん mailto:sage [2018/10/24(水) 20:34:04.80 ID:GjsFXG0cp.net]
>>892
>最初のプロパティみたいなの

これって何?

925 名前:デフォルトの名無しさん mailto:sage [2018/10/24(水) 21:13:03.43 ID:scNJP40R0.net]
三宅陽一郎は日本のゲームAIの権威と言われてるそうですが本当なのでしょうか?

926 名前:デフォルトの名無しさん mailto:sage [2018/10/25(木) 09:15:39.86 ID:Kapp8Prd0.net]
AIと相性の良い技術ってなに?

927 名前:デフォルトの名無しさん mailto:sage [2018/10/25(木) 09:55:47.79 ID:0TmPhp2B0.net]
プログラム

928 名前:デフォルトの名無しさん mailto:sage [2018/10/25(木) 10:44:00.40 ID:bw1V0BXua.net]
うんこ



929 名前:デフォルトの名無しさん [2018/10/25(木) 15:07:49.79 ID:qGEaBy7DM.net]
>>895
画像診断。下手な医者より優秀だろう

930 名前: mailto:sage [2018/10/25(木) 20:36:36.38 ID:yGYVJ0zR0.net]
>>895
超解像






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<243KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef