- 1 名前:デフォルトの名無しさん mailto:sage [2018/08/07(火) 18:56:37.59 ID:sGPH9ejna.net]
- 機械学習とデータマイニングについて何でもいいので語れ若人
※ワッチョイだよん 次スレ立ての際は、一行目冒頭に !extend:on:vvvvv:1000:512つけてね ■関連サイト 機械学習の「朱鷺の杜Wiki」 ibisforest.org/ DeepLearning研究 2016年のまとめ qiita.com/eve_yk/items/f4b274da7042cba1ba76 ■前スレ 【統計分析】機械学習・データマイニング19 mevius.2ch.net/test/read.cgi/tech/1520586585/ VIPQ2_EXTDAT: default:vvvvv:1000:512:----: EXT was configured
- 792 名前:デフォルトの名無しさん mailto:sage [2018/10/15(月) 17:58:33.61 ID:XOcEM3KAa.net]
- >>761
検出器を使っていない理由は画像全体にラベリングしたいからです。 それだとsegnetとかをファインチューニングしろ、と言われそうですが ピクセル単位のラベル付けが困難なためです。 結局のところsegnetのようなものをCNN分類を矩形走査することで画像単位ラベルのデータセットのみで作ってみたいということです。
- 793 名前:デフォルトの名無しさん mailto:sage [2018/10/15(月) 18:19:52.50 ID:9QRJdq2GM.net]
- >763
あーそうだよね。その存在が脳からドロップアウトしてたわ、ありがとう
- 794 名前:デフォルトの名無しさん [2018/10/15(月) 20:07:31.69 ID:E7SbL8Og0.net]
- BERTの成功とその方向性から垣間見える
脳構造の模倣における連続的時間情報の把握の重要性 俺が>>650で指摘している状態 >おそらくは完璧を求めると >階層的にAttentionによる時間情報とポジション付与をしつつ、それらを考慮したCNNで畳み込み >なおかつそれらすべての層を参照しながら、動的に再帰的処理する必要性がある >これにGAN的な世界モデルによる強化学習手法を取り入れれば汎用AIができるだろう これとBERTで使われている、transformerよりも更に多層化して各層の参照密度を増したAttentionとの間に 共通性を認識できる人がいれば、俺の言い分を理解してもらえるだろう
- 795 名前:デフォルトの名無しさん mailto:sage [2018/10/15(月) 20:39:32.75 ID:hN5zazbp0.net]
- 深層学習の話ばっかりだなあ。
- 796 名前:デフォルトの名無しさん mailto:sage [2018/10/15(月) 21:31:32.65 ID:E6pr56BO0.net]
- 私たち日本人の、日本国憲法を改正しましょう。
総ム省の、『憲法改正國民投票法』、でググって みてください。拡散も含め、お願い致します。
- 797 名前:デフォルトの名無しさん mailto:sage [2018/10/15(月) 23:56:03.72 ID:9aG3IWOmd.net]
- >>767
じゃあ違うネタ出してみるとか 確率モデルのpythonライブラリは何使うのが良いかしら
- 798 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 10:26:37.31 ID:EErsLIkGH.net]
- >>764
画像全体にラベリングってマルチラベリングしたいってこと? yoloもssdもラベル作成は矩形単位だよ
- 799 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 11:20:41.82 ID:LVmCdvc6a.net]
- >>770
例えば、 2cm四方の正方形の画像があった場合 その正方形を1cmの正方形で4分割して 分割した4枚それぞれの正方形の画像が人か人でないか分類したい、 ということです。
- 800 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 11:48:54.78 ID:EErsLIkGH.net]
- >>771
その分割から分類までやってくれるのが まさにyoloとかssdなんだけど だめなの?
- 801 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 15:38:43.59 ID:QWtfESi60.net]
- そこんとこyoloしく
- 802 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 18:17:43.89 ID:LVmCdvc6a.net]
- >>772
すいませんちょっと質問の仕方を変えさせていただきます。 入力画像に対して「犬」、「猫」、「それ以外」の3クラスで分類を行いたい場合、 「それ以外」のクラスとしてどのようなデータセットを与えるべきでしょうか?
- 803 名前:デフォルトの名無しさん [2018/10/16(火) 18:25:20.10 ID:YLHbxnbGF.net]
- one
near threeee
- 804 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 18:49:53.13 ID:UuSrgkCV0.net]
- 与えないという手もあります
- 805 名前:デフォルトの名無しさん [2018/10/16(火) 19:13:11.22 ID:mtK6WYc4a.net]
- cifar-10やimagenetの犬猫以外のクラスを与えたら?
- 806 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 19:50:22.81 ID:tz34EJAO0.net]
- この質問2ヶ月くらい続いてるやつではw
- 807 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 19:51:50.12 ID:Mw6GhB3d0.net]
- >>774
>「それ以外」のクラスとして 2クラス分類で 犬 1 0 猫 0 1 それ以外 0 0 とする。やったことないけど。
- 808 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 20:00:36.33 ID:REwKrz4C0.net]
- データセットって訓練データとテストデータに分けるんだな
- 809 名前:デフォルトの名無しさん [2018/10/16(火) 20:00:36.96 ID:BMUJGI05r.net]
- >>779
確率として解釈出来なくなるから 犬 100 猫 010 他 001 とすべき
- 810 名前:デフォルトの名無しさん mailto:sage [2018/10/16(火) 20:07:12.15 ID:Yv68lSL8a.net]
- >>777
与えた結果よい成果を生んだ参考文献か何かはありますでしょうか? 直感ですと特徴を捉えきれないと思うのですが上手く作用したりするのですかね。 >>779 そんなラベルの付け方もあるのですか?? 出力層の正規化はどうやるのでしょうか?
- 811 名前:デフォルトの名無しさん [2018/10/16(火) 22:36:45.28 ID:mtK6WYc4a.net]
- >>782
文献は知らないけど スクラッチで学習するんじゃなくGoogLeNetとかをファインチューニングしたらどうかな
- 812 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 00:11:27.64 ID:iaDlPipOa.net]
- >>778
同じ話しを延々とやってるわな、根本的に向いてないわ
- 813 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 01:24:59.40 ID:7+LkzvLlD.net]
- ゴチャゴチャ言ってるけど、実験結果とか全然書かないんだもんw
- 814 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 09:22:23.63 ID:/KG9iA6xH.net]
- >>774
yoloとかssdなら犬検出、猫検出 どちらも検出しないで3クラス分類できるよ それ以外のデータセットなんていらない
- 815 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 18:06:30.59 ID:c6ApCslj0.net]
- 実験結果
CPU使用 MNISTでソフトマックス関数使ってやってみた結果 100エポック 92% フィードフォワードネットワーク利用 300エポック 98% MNISTぐらいならCPUでもそこまで時間かからないな 人工知能用にPC買う予定だけど GPU使用が楽しみだ
- 816 名前:デフォルトの名無しさん [2018/10/17(水) 20:25:47.05 ID:aGL7TZ3Ma.net]
- >>786
分類やりたいだけなのにわざわざ検出アルゴリズム持ち出すのって大仰過ぎないか
- 817 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 20:58:04.44 ID:luoOlS94a.net]
- 普通のニューラルネットで猫なら[1,0]、犬なら[0,1]と出力するように学習させれはどちらの特徴も持たないものは[0,0]と出力されるはずだろう
- 818 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 21:23:30.00 ID:ef/wXGoVr.net]
- 最小二乗確率的分類器ってどうなん?
- 819 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 22:36:58.67 ID:KdQY5VHb0.net]
- >>789
そうなるかな。どっちかを出力するんじゃない。。。
- 820 名前:デフォルトの名無しさん mailto:sage [2018/10/17(水) 23:52:28.66 ID:bpF2/qnc0.net]
- >>787
適当に3~4階層で作ったので MNIST87%行ったから DLチョロいじゃんとか思って Karasの他のapplicationに手を出したら 学習終わるまで300時間とか言われて泣きが入って RTX2080Ti買おうと思ったら高過ぎワロタ
- 821 名前:デフォルトの名無しさん mailto:sage [2018/10/18(木) 18:22:42.59 ID:10LrZVzjM.net]
- どうも・・・。俺です
AIを否定する記事見てムカついた 絶対に女を裸にするアプリ作ってやる クソが
- 822 名前:デフォルトの名無しさん mailto:sage [2018/10/18(木) 18:26:21.08 ID:XeUf991ya.net]
- 誰だよお前
- 823 名前:デフォルトの名無しさん mailto:sage [2018/10/18(木) 18:29:04.82 ID:WjJlstdVa.net]
- >>786
yoloから検出機能を取ったようなネットワークがあれば良いのですが・・ 最悪全クラスに対して識別器を作ってもいいので、 犬の画像が入力された時だけ発火して1を返すようなネットワークでもいいのですがそんなのありませんかね? >>789 多クラス分類のためソフトマックス正規化を使っているので0,0にはならないですね。 この例で言うと0.5,0.5になってくれると大万歳なのですが大体そうはなりません。 上の人が言ってるようにどっちか推して来やがります。 >>792 そこまで高いの買わなくても、 サブ機に1050Ti積んでますけど inceptionv3の199層〜のファインチューニングでも 32000枚を100エポック回して大体5時間で終わりますよ 低価格でいろいろ試すには悪くない性能だと思うので検討してみてはいかがでしょうか。
- 824 名前:デフォルトの名無しさん mailto:sage [2018/10/18(木) 19:39:03.34 ID:0jTuf2pp0.net]
- 1000クラス分類のImageNet使えば云いだろ…
それこそkerasや
- 825 名前:pytorchならなんの苦労もなく呼び出せるわ []
- [ここ壊れてます]
- 826 名前:デフォルトの名無しさん mailto:sage [2018/10/18(木) 21:08:27.70 ID:3WNLz9C3a.net]
- >>795
ソフトマックスを使う限り、出力が[0.5, 0.5]というのは犬の確率と猫の確率が同程度であるという意味しか持たない 同程度に高いのかもしれないし同程度に低いのかもしれないわけだが、この両者は分離できなければならない ということで出力層にソフトマックスは使わずに例えば単にシグモイドを使えば出力される2つの数はそれぞれ犬・猫の確率を独立に算出したものとなる 適当な閾値を決めて一方のみが大きければ犬or猫と判定、共にゼロ近くならどちらでもないと判定すればいい それ以外の中途半端な出力が頻発するならそもそも犬猫の特徴を学習できていないので出力層を工夫したところで無駄であり、学習データを増やしたり出力層以前の層の構造を改良するしかない
- 827 名前:デフォルトの名無しさん [2018/10/18(木) 22:55:11.05 ID:E8jILIgaa.net]
- >>789
犬猫だけで分類学習したネットワークにそれ以外のデータを入力することがナンセンス 学習した分布から外れたデータだから出力がどうなるかは分からない 犬でも猫でもない画像だとしても高い確度でどちらかに分類され得る
- 828 名前:デフォルトの名無しさん [2018/10/19(金) 01:42:27.71 ID:heGbLBdq0.net]
- >>798
最近傍距離でやったらそうなるよね. 本当にナンセンスと言うことに同意.
- 829 名前:デフォルトの名無しさん [2018/10/19(金) 01:51:18.44 ID:heGbLBdq0.net]
- >>795
元々の目的が人か否かを検出したいんだよね? yoloを使えば良いと思うけど,それを使いたくないなら >>760 の通りの方法でも汎化性能は悪くなるはずだけど行けなくもない(実運用はやめてね) 人のように見えるオブジェクトを誤検出するだろうし,人のポスターを人と判断するだろうし 多クラス分類にして,より確率の高い分類器xを選ぶじゃ駄目なの?2値分類は汎化性能という意味では極端に弱いから自動運転に関しては辞めた方が良いと思うよ
- 830 名前:デフォルトの名無しさん [2018/10/19(金) 01:55:24.05 ID:heGbLBdq0.net]
- >>760
言い忘れたけど,人以外の物体が何を指すのかよく分からないけど 人が写って無い道路の画像で学習させるのが一般的だと思うよ. それ以外の画像だと潜在空間における人とotherの距離が不明になるし辞めた方がいいよ
- 831 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 05:34:08.20 ID:8J26xkWMa.net]
- もう完全に教えてちゃんスレになったなw 立ち寄る必要なさそうだ
- 832 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 05:50:40.44 ID:rn6AXKJQd.net]
- 課題をただで人に聞きまくって何とかしたいという日本人のテンプレ。わりと良くいる
- 833 名前:デフォルトの名無しさん [2018/10/19(金) 06:33:27.67 ID:heGbLBdq0.net]
- 研究を議論したいなあ,だれかスレ作って
- 834 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 07:35:08.81 ID:/W+GDYNa0.net]
- AIっていかに論文をたくさん読んで、どれだけパクるかの勝負じゃん
- 835 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 07:37:52.55 ID:568QDdW/a.net]
- どんな分野でも基本は既存研究の発展で、ごく稀に全く新しい発明が登場するものだ
- 836 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 09:32:23.71 ID:TrVy4dze0.net]
- 研究と応用の距離が近いのね
- 837 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 13:50:41.29 ID:R1ndva0Ba.net]
- >>797
なるほど、凄く答えに近いこと聞いた気がします。 アクティベートをシグモイドにするだけでその挙動が得られるのですか? 条件反射でソフトマックス使ってたので盲点でした。 少し試してみます。
- 838 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 13:56:34.41 ID:R1ndva0Ba.net]
- >>798
なるほどそういうものなのですね。 しかし疑問なのが、どうして犬を検出する検出器は学習させることが出来るのに 犬の画像が入力された時だけ1を返すネットワークを学習させることができないかです。 明らかに後者の方が簡単なように思うのですが。。 お詳しそうなのでよければ教えていただけませんか?
- 839 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 14:
]
- [ここ壊れてます]
- 840 名前:13:06.61 ID:LAG8930r0.net mailto: >>807
パラメーター変えてみました、別のに応用して見ましたということかw [] - [ここ壊れてます]
- 841 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 14:15:57.11 ID:gl4kTOSHd.net]
- >>809
機械学習の一般論として、なにかを判定するには教師データとして正例と負例をおなじ数だけ与えるのが基本でしょう 「googleが猫を検出するDNNを作った」事例がよく取り上げられるけど、あれだって大量の猫画像とそうでない画像を与えている
- 842 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 14:38:27.78 ID:TrVy4dze0.net]
- >>810
そこまでは言ってない。 ダークマターの質量が判りました。ってのより基礎研究の利用が応用に近いなあと
- 843 名前:デフォルトの名無しさん [2018/10/19(金) 15:33:05.18 ID:pogP5zPXr.net]
- >>809
前者は1000クラスの分類器がベースになってる 日常的に身の回りにある物は大体この1000クラスに含まれるので犬を(も)検出できる 当然その1000クラス以外が入力された時にどうなるか保証はない 後者は犬以外のどんな画像が入力されても0を返すのが難しい これは犬以外に対応する潜在空間が圧倒的に広いから でもまあ実用的には1000クラス分類器の流用で十分な気もするな
- 844 名前:デフォルトの名無しさん [2018/10/19(金) 15:55:18.03 ID:7FKkwhq/0.net]
- >>805
> AIっていかに論文をたくさん読んで、どれだけパクるかの勝負じゃん ということは、AIが何か知っているんか? じゃ、AIとは何か言ってみ?
- 845 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:05:15.03 ID:x0p9L0oV0.net]
- >>812
難しいことご存知でw
- 846 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:20:57.94 ID:JhfkDMcM0.net]
- 絵描き
「性的対象判定機にこの白黒の線画を判定させたらすごいスコアでた!」
- 847 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:54:39.13 ID:R1ndva0Ba.net]
- >>813
なるほど。。 それなら素人考えですと、 imagenetの画像を犬とそれ以外の2クラスに分けて 2クラス分類で学習させたネットワークは その検出器と比べて認識力ではほぼ等価と見なせますか?
- 848 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 16:59:37.79 ID:R1ndva0Ba.net]
- >>811
なるほど。 ではそのように猫だけを検出するネットワークを作りたいとしたら、 ネガティブとしてどんな画像を与えるのですか? 上の方も言ってる通り潜在空間が広すぎると思うのですが、 例えばimagenetの猫以外の画像を全てネガティブとして1クラスに押し込んで特徴って捉えれるのですか?
- 849 名前:デフォルトの名無しさん [2018/10/19(金) 17:18:26.23 ID:pogP5zPXr.net]
- >>817
普通にそれをやると犬以外のデータが圧倒的に多いので多分上手くいかない 何も考えず全て犬以外に分類するだけで正解率99.9%を達成できるので、単純に分類誤差最小化で学習するとそうなる 学習済みネットワークの出力を加工するかファインチューニングするのがいいと思う
- 850 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 17:38:40.69 ID:R1ndva0Ba.net]
- >>819
なるほど、、ためになります。 そういう実用的な事が書いてある書籍か何かありませんか? ディープラーニングの本いろいろみて回ったのですが、 理論(数式)責めでドヤってる本か、 ネット見れば分かる程度の初歩的な実装方法書いたような本しかなくて困ってるのですが・・ 欲しいのは数式でもチュートリアルでもなく実用性のあるものなのですが。 これ1冊あれば数式読まなくてもモデル選定からチューニングのコツまで分かるみたいな本ないですか?
- 851 名前:デフォルトの名無しさん [2018/10/19(金) 17:55:39.31 ID:pogP5zPXr.net]
- >>820
そんなうまい話ないぞ 学習したいデータや問題毎に色々な試行錯誤がある 仮に望むような本があって表面だけなぞったとしても同じ悩みにぶつかるよ
- 852 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 18:30:36.19 ID:aSQ6R7eH0.net]
- 今CycleGANの学習をCPUでやってる
何時間かかるんだろう・・・。
- 853 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 18:39:27.03 ID:NZMDXKZv0.net]
- cycleganは夢が広がるほど万能感あるけど実際はなかなか上手く学習しない
- 854 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 20:03:10.47 ID:aSQ6R7eH0.net]
- >>823
形状を変化させるのは苦手みたいだね テクスチャ系なら上手くできる それにしてもCPUで1時間半やったけど1エポックも進まないわ・・・
- 855 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 21:18:55.91 ID:TlirwEgq0.net]
- >>818
そういうこと(猫画像とそれ以外画像とに分ける)で学習してる例が多いと思うけどね。ただ指摘があるように正例と負例の数は揃えないと。 あなたが実際にその分類器を使う段階になって、猫以外の画像としてどういうものが入力されるのか? それに近い分布のものを負例としなきゃ 「仕事ではじめる機械学習」あたり読んでみては(自分は読んでないけどw)
- 856 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 22:14:56.20 ID:R1ndva0Ba.net]
- >>821
まあそうですよね。 でもいかんせん素人だと何をどう試行錯誤していいかすら分からないので 行き詰まった時に試してみるチェックリストみたいな感覚で使いたいのですが・・
- 857 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 22:16:47.09 ID:R1ndva0Ba.net]
- >>825
ありがとうございます。 入力に近い分布のものなら1クラスにまとめて放り込んでも大丈夫なんですね。勉強になりました 本もチェックしてみます。
- 858 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 22:17:32.42 ID:TrVy4dze0.net]
- 誰かコンサルしてあげなきゃ。素人が機械学習使えないだけなのに機械学習自体が評価されなくなる未来が見える
- 859 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 23:05:52.00 ID:dup5d98D0.net]
- https://towardsdatascience.com/build-your-first-deep-learning-classifier-using-tensorflow-dog-breed-example-964ed0689430
上記のリポジトリ https://github.com/udacity/dog-project
- 860 名前:デフォルトの名無しさん mailto:sage [2018/10/19(金) 23:52:54.51 ID:heGbLBdq0.net]
- >>820
数式から逃げるな。 機械学習の数学程度でうろたえてるようじゃ人生きついぞ
- 861 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 00:58:23.13 ID:2DsZDK0Sa.net]
- 正例と負例の訓練データ数が全く桁違いの場合って割と多いと思うんだけど
例えば機械の故障判定とか製品の不良判定とか、正常データが大量にあって異常データは僅かになるのが典型的 その場合全て正常と判定するモデルの正解率は高くなるが、混同行列見たりF1値を評価指標にすればそんなのは非常に悪い学習結果と判断できるから排除できる
- 862 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 13:39:51.48 ID:MvoUANTC0.net]
- Macbook ProのCore i7 CPUで半日やったが、
1エポックしか学習できなかったわ Geoforce GTX 1080 Ti買うことにした 27万ぐらいするけどもっと安く買えねーかな
- 863 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:25:47.62 ID:d68y9Vxsa.net]
- MacBookProなら一応グラフィックカード付いてるはずだけど呼び出せてなくない?
2016年モデルだけどついてるよ、スペックはお情け程度かもしれないけど
- 864 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:36:17.04 ID:d68y9Vxsa.net]
- >>830
理解出来ない訳では無いですけど無駄手間じゃないですか? ただツールとして使いたいだけで理論を開発しようって訳ではないので(そもそも数式には興味ない)、 数式見るのは研究者がやればいいと思うのですが。 ガウシアンぼかしの式すら知らない素人でもリファレンス見て試行錯誤で華麗にフォトショップ使いこなしますよね? あんな感じに早くなればいいと思うこの頃です
- 865 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:48:12.80 ID:n6bj2eyUM.net]
- proでもディスクリートGPUが載ってるかどうかはモデルによる。
- 866 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:55:13.15 ID:jHhEz0TNM.net]
- >>834
それはない。数式読まずに避けてたら本質は理解できない
- 867 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 16:58:22.99 ID:yNArAPz00.net]
- 特
- 868 名前:定のものを認識させて物理空間上の位置(座標)を出力値とする場合って
SSDやYoloのような物体認識を使った方が早いかな? >>883 882が何のライブラリを使ってるか知らんけど、tensorflowのMac版はCPUしか対応してない [] - [ここ壊れてます]
- 869 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 17:04:33.60 ID:V8iNamHla.net]
- 最先端の研究結果の数式が必ずしも理解できる必要はないが
機械学習の基礎になる線形回帰、ロジスティック回帰、ニューラルネットワークの全結合層の原理程度は分かっていなければ厳しい これが理解できていなければ自分の手持ちデータで何かやろうにもどんな手法を使うべきか見当も付けられず、 名前を知ってるものを適当に使ってみて精度が良かった・悪かった、と錬金術的にやるしかなくなる
- 870 名前:デフォルトの名無しさん [2018/10/20(土) 17:09:48.35 ID:gp/trlhl0.net]
- 機械学習ではな
自分よりお利口なもんはできない まず自分がなんでバカで頭悪いかを考えたほうが有意義だからな バカのくせになんで自分よりお利口なもんができると思うのか そこが不思議でならない
- 871 名前:デフォルトの名無しさん [2018/10/20(土) 17:17:07.08 ID:gp/trlhl0.net]
- バカでなければ
どうやったら自分が効果的に学習できるか考えるからな 自分が効果的な学習ができないのに 計算機で効果的な学習とかまずムリ
- 872 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 17:42:16.87 ID:aRbeGa2e0.net]
- 以上、バカの主張でした
- 873 名前:デフォルトの名無しさん [2018/10/20(土) 18:39:36.65 ID:AUqXYm6Fa.net]
- >>834
フォトショップを知識がなくても使いこなせるのはアルゴリズムが成熟していて大半の処理は裏方で自動でこなしてくれてるから 機械学習では自動で問題毎に自動で最適な処理をできる技術がまだ確立されていないから、ツール的に軽く触っただけで良い結果を得るのは難しいよ
- 874 名前:デフォルトの名無しさん [2018/10/20(土) 18:49:17.27 ID:gp/trlhl0.net]
- 知識って。。。
画像処理ソフトとか画像データのピクセル加工やってるだけやんけ で、見た目がそうなってる とりあえず見た目こんな感でいいや コレを機械学習と同じと思ってる時点でもうね
- 875 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 20:39:27.85 ID:k0LrzqP2a.net]
- >>836
本質を理解しようとはあまり思っていませんね。 とりあえずツールとしてラクチンに使えたらそれだけでよいので・・ >>837 そうだったんですね、自分winでブートしてるのでそれは知りませんでした。 >>838 そうなんですよ、そこなのです。 だから手持ちデータとやりたいこと等から使うべき手法やモデルを教えてくれる本とかがあればいいんですけどねえ
- 876 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 20:44:45.92 ID:k0LrzqP2a.net]
- >>842
そうですよね。 だから最適な処理を見つけるためのバイブル的なものがあればなあと思っています。 >>843 本質的にはあまり変わらないと思うのですが。 上の人が言っている通り自動化する技術が確立されていないだけで、 学習自体はデータに対して同じ処理を繰り返してるだけですし、 フォトショップでいう見た目=テストaccなりlos、という感じで使えても悪くないと思いますし 最近でいうならそれこそGANなんて見た目だけの話なのでとりあえずこんな見た目でいいや、で解決すると思います。
- 877 名前:デフォルトの名無しさん mailto:sage [2018/10/20(土) 21:05:27.07 ID:xvv7H8Vz0.net]
- それはそうかもしれないがそうだとするとプログラム板の話題ではなくなるな
- 878 名前:デフォルトの名無しさん [2018/10/21(日) 03:09:43.34 ID:yA/rLZti0.net]
- まあ発展途上よな
実用も含めて
- 879 名前:デフォルトの名無しさん [2018/10/21(日) 05:50:34.84 ID:MsXt9/J70.net]
- >>845
>だから最適な処理を見つけるためのバイブル的なものがあればなあと思っています。 これは最先端の研究なので論文を読んでパラメータの設定はどうするとか学ぶ必要がある. いくら機械学習の出版が早いとはいえ待ってたら2,3年は遅れた知識になる. 後結局手法はAutoMLとかで大体今でも自動化できてるんだけど,データから推定した結果の解釈とかの問題もあるし, 全部が全部バイブル通り行くとは行かないのが現実.「全てのモデルは間違ってる.完全なる解釈はない」というのが統計学の鉄則だよ
- 880 名前:デフォルトの名無しさん [2018/10/21(日) 05:53:12.18 ID:MsXt9/J70.net]
- 赤池先生の経歴をと尊敬を持って機械学をやるべきだと僕は思ってる.
汎化誤差の最小化だけじゃあまりにもつまらないし.最近のAmazonの差別AIみたいなのができるのが落ち. 未来はどうなるか分からないけど数式から逃げることはできないと覚悟した方が良いと思う.
- 881 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 08:11:33.22 ID:UfdBUaGe0.net]
- lossの定義の仕方さえ分かれば良いだけの話だろ
昔なんか自動微分を手前で実装してたんだぞ
- 882 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 08:40:17.71 ID:Cf36qMnJM.net]
- >>833
俺のは2018モデルだけどNVIDIAだったかな? あと 2080 Tiの方がコスパ高い https://i.imgur.com/SfoNEyI.png
- 883 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 08:54:49.06 ID:Cf36qMnJM.net]
- あー最新版TensorflowではmacのGPUサポートしてないわ
- 884 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 09:46:27.36 ID:IzQUIvSq0.net]
- >>849
AICはねw
- 885 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 10:11:18.91 ID:MsXt9/J70.net]
- 最近edX初めてめっちゃいいよな
- 886 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 10:24:19.90 ID:Pb7O8TaX0.net]
- courseraの"How to Win a Data Science Competition: Learn from Top Kagglers"っての始めたけど、
これはムズいわ まず、ロシア人が何を言ってるのか聞き取れない
- 887 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 10:38:57.18 ID:MsXt9/J70.net]
- ロシア語はきついわ
- 888 名前:デフォルトの名無しさん [2018/10/21(日) 11:29:45.72 ID:sjXodBVwF.net]
- >全部が全部バイブル通り行くとは行かないのが現実.「全てのモデルは間違ってる.完全なる解釈はない」
ほんそれ
- 889 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 13:35:30.75 ID:Ya81v9Q1a.net]
- >>848
最先端のネットワークはモチロンそうでいいと思うのですが、 DropoutやらReLUとか組み込んだCNNならもう流行りだして2,3年は経ってると思うので それくらいの構造のCNNでimagenetのような分類タスクしようと思った時にモデル選定とかどうチューニングしたらいいとかある程度まとめてくれてるような書物があったらいいなと思いました。
- 890 名前:デフォルトの名無しさん [2018/10/21(日) 14:04:50.88 ID:MsXt9/J70.net]
- >>858
あるのでは
- 891 名前:デフォルトの名無しさん [2018/10/21(日) 14:07:48.83 ID:MsXt9/J70.net]
- 最近の書籍だと直感ディープラーニングとか
- 892 名前:デフォルトの名無しさん mailto:sage [2018/10/21(日) 16:57:03.15 ID:SdRIg5RYa.net]
- あれこれ楽すること考える前にCourseraの有名な機械学習コースのシラバスの各項目をざっくりとでも他人に説明できないレベルならCourseraやるのが一番手っ取り早い
|

|