[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/26 09:59 / Filesize : 195 KB / Number-of Response : 605
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

丸投げしたい問題を書くスレ



511 名前:ご冗談でしょう?名無しさん mailto:sage [2011/07/29(金) 17:22:00.44 ID:???]
([d/dt]^2)x(t) + p*[d/dt]x(t) + q*x(t) = 0
これは次のように変形できる。
([d/dt]^2 - (λ_1 + λ_2)*[d/dt] + λ_1*λ_2)*x(t) = 0
(d/dt-λ_1)*(d/dt-λ_2)*x(t) = 0
の解は、x(t) = exp[λ_1*t], exp[λ_2*t] を含む。
λ_1=λ_2=λの場合、
([d/dt]^2 - 2λ*[d/dt])*x(t) + (λ^2)*x(t)=0
となって、これに、
x(t)=C(t)*exp[λ*t]
を入れるとC(t)の微分方程式を得る。
([d/dt]^2)*C(t)=0
このとき、
C(t) = a*t + b
だから、
x(t) = (a*t + b)*exp[λ*t]
a, b は境界条件から決まる定数。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<195KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef