[表示 :
全て
最新50
1-99
101-
201-
301-
401-
501-
601-
701-
801-
2chのread.cgiへ
]
Update time : 08/24 08:58 / Filesize : 268 KB / Number-of Response : 843
[
このスレッドの書き込みを削除する
]
[
+板 最近立ったスレ&熱いスレ一覧
:
+板 最近立ったスレ/記者別一覧
] [
類似スレッド一覧
]
↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました
数学基礎論・数理論理学 その14
497 名前:
132人目の素数さん
mailto:sage
[2014/02/11(火) 20:00:03.23 ]
論理式の構成列 n の最後の項が x とする
(無駄な項を省いて)構成列をツリー状に配置すれば
len(n’)≦len(x)^2 となるような構成列 n’がつくれる(理由は後述する)ことがわかるので
初めから len(n)≦len(x)^2 を満たす n を選んでおく
また、無駄を省いたことで、構成列 n には x の一部である論理式しか現れないとしてよい
n = [P1]^m1×…×[Plen(n)]^mlen(n) ≦ [P1]^x×…×[Plen(n)]^x ≦ { [Plen(x)^2]^x }^len(x)^2 = [Plen(x)^2]^xlen(x)^2
構成列をツリー状に配置すれば
len(n’)≦len(x)^2 となるような構成列 n’がつくれる理由:
構成列 n を元にして論理式 x を構成するツリーをつくる(ツリーの根に当たるのが x である)
このツリーには x の一部である論理式しか現れない
ツリーを遡るほど論理式は短くなるので、ツリーの高さは len(x) 以下
ツリーの葉(最も基本的な論理式)の個数も len(x) 以下
したがって、このツリーに現れる論理式の個数は len(x)×len(x) 以下である
逆にこのようなツリーを元にして x の構成列 n’がつくれる
[
続きを読む
] / [
携帯版
]
全部読む
前100
次100
最新50
▲
[
このスレをブックマーク! 携帯に送る
]
2chのread.cgiへ
[
+板 最近立ったスレ&熱いスレ一覧
:
+板 最近立ったスレ/記者別一覧
]
( ´∀`)<268KB
read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) /
eucaly.net
products.
担当:undef