[表示 : 全て 最新50 1-99 2chのread.cgiへ]
Update time : 08/10 22:22 / Filesize : 22 KB / Number-of Response : 75
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

高校数学の質問スレPART354



35 名前:132人目の素数さん mailto:sage [2013/08/10(土) 16:29:28.57 ]
Oを中心とする円周上に相異なる3点A,B,Cをとり、△ABCの重心をGで表すとき、点Aから辺BCに下ろした垂線上にGがあるための条件を(↑OA)、(↑OB)、(↑OC)を用いて表わせ。

という問題について、
AからBCに下ろした垂線がBCの垂直二等分線となればよいので、すなわちBCの中点をMとすると三点A、O、Mは一直線上に存在する。
ゆえに求める条件は
(↑AM)=k(↑AO) (k∈R)

とした上でこの式を変形して答えを出そうと思ったのですが、kが邪魔で答えに辿り着きません。
A,O.Mが一直線上に並ぶことは題意を満たすための必要十分条件では無いのでしょうか?また、何が足りないのですか?






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](*・∀・)<22KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef