- 513 名前:新高校3年 [2013/03/30(土) 20:39:40.57 ]
- 白チャート数学Vの132の問題
f(x)=log((-1+√(1+4x))/2) y=f(x) (2≦x) その逆関数y=g(x) (0≦x) でa≧2のとき、integral[f(x),{x,2,a}]=af(a)-integral[g(x),{x,0,f(a)}] となることを示せ。という問題です。 x 2→a y 0→f(a) integral[f(x),{x,2,a}]=f(a)g(f(a))-integral[g(x),{x,0,f(a)}]=af(a)-integral[g(x),{x,0,f(a)}] 終了 だそうなのですがどうしてf(a)g(f(a))がaf(a)になるのかわかりません・・・・ どなたか教えてくださいお願いします。
|

|