[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 10/18 14:42 / Filesize : 161 KB / Number-of Response : 599
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね375



79 名前:132人目の素数さん mailto:sage [2012/10/01(月) 01:03:02.75 ]
もう一つ訂正があったので、まとめます

p∈Zを素数、Rをガウスの整数環(=Z[i])とする。
このとき
(p)=pRが素イデアル
⇔(p)が極大イデアル
⇔p≡3(mod4)
を示せ。

Rはユークリッド整域、特に単項イデアル整域だから素イデアルと極大イデアルが同値なのは明らかですが
それとp≡1(mod4)が同値であることがわかりません。
pが2のときは、明らかに(2)は素イデアルでなくp=2 !≡1(mod4、!≡は≡の否定)だからok
また、pが奇素数のときは(p)が素イデアル「でない」こととp=a^2+b^2となる整数a,bが存在することと同値なのはわかりました
ですが、僕はそれとp≡1(mod4)が同値だということの証明は第一補充則を使った方法しかしらないのですが、この本は3章で相互法則が紹介されているので第一補充則を使わない証明を教えてください。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<161KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef