[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 08/29 23:20 / Filesize : 145 KB / Number-of Response : 668
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

高校生のための数学の質問スレPART339



79 名前:熊襲 [2012/08/21(火) 08:16:30.18 ]
前掲式に一部誤りあり。再掲する。下記式の導出を願う。
cos(π/60) =(1/16)*((√6+√2)√(10+2√5)+(√6-√2)(√5-1))
sin(π/60) =(1/16)*((√6+√2)√(10+2√5)+(√6-√2)(√5-1))
既知として、使える導出済みの式。
1の5乗根を代数学的に解いた解と複素空間上でオイラーの公式により解いたものより
cos(2π/5) =(1/4)*(√5-1) , sin(2π/5) =(1/4)* √(10+2√5)
cos(4π/5) =(1/4)*(-√5-1) , sin(4π/5) =(1/4)* √(10-2√5)
cos(6π/5) =(1/4)*(-√5-1) , sin(6π/5) =-(1/4)* √(10-2√5)
cos(8π/5) =(1/4)*(√5-1) , sin(8π/5) =-(1/4)* √(10+2√5)
cos(2π/5)とsin(2π/5)に加法定理を適用して得られる式
cos(π/5) =(1/4)*(√5+1) , sin(π/5) =(1/4)* √(10-2√5)
cos(π/10) =(1/4)* √ (10+2√5) , sin(π/10) =(1/4)*(√5-1)
cos(π/20) =(1/4)* √(8+2√(10+2√5)) , sin(π/20) =(1/4)* √(8-2√(10+2√5))







[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<145KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef