[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/18 22:02 / Filesize : 490 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む6



91 名前:現代数学の系譜11 ガロア理論を読む [2012/07/22(日) 17:45:31.80 ]
>>76
>T.Yoshida

こんなページが・・
mathoverflow.net/questions/64141/geometric-construction-of-depth-zero-local-langlands-correspondence
Geometric construction of depth zero local Langlands correspondence - MathOverflow

Dear community,
In light of the recent work of DeBacker/Reeder on the depth zero local Langlands correspondence, I was wondering if there is an attempt to "geometrize" the depth zero local Langlands correspondence.
In particular, in Teruyoshi Yoshida's thesis, one can see a glimpse of this for ,

Sincerely,
Moshe Adrian edited May 7 2011 at 3:13

Teruyoshi Yoshida responded to my question by e-mail and he is ok with my posting his response on mathoverflow :
"Dear Moshe,
thanks for your interest - yes it would be very interesting to do this with more general Rapoport-Zink spaces, but
i) I haven't been successful in finding an intrinsic moduli interpretation of my model for tame Lubin-Tate space, hence the difficulty in generalizing to other groups
ii) the so-called Drinfeld level structures do not seem to give nice integral models for the Rapoport-Zink spaces with deeper levels.
In spite of these obstacles in arithmetic-geometry, it would be interesting to investigate the cohomology for other RZ spaces (there are works by Ito-Mieda, Shin, Strauch etc). Feel free to quote my email in mathoverflow.

very best, Teruyoshi"








[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<490KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef