[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/18 22:02 / Filesize : 490 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む6



417 名前:現代数学の系譜11 ガロア理論を読む [2012/09/09(日) 16:45:50.43 ]
>>416 BSDは、下記各1-6にリンクあり
en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
Current status
The Birch and Swinnerton-Dyer conjecture has been proved only in special cases:
1.Coates & Wiles (1977) proved that if E is a curve over a number field F with complex multiplication by an imaginary quadratic field K of class number 1, F = K or Q,
and L(E, 1) is not 0 then E(F) is a finite group. This was extended to the case where F is any finite abelian extension of K by Arthaud (1978).
2.Gross & Zagier (1986) showed that if a modular elliptic curve has a first-order zero at s = 1 then it has a rational point of infinite order; see Gross?Zagier theorem.
3.Kolyvagin (1989) showed that a modular elliptic curve E for which L(E,1) is not zero has rank 0, and a modular elliptic curve E for which L(E,1) has a first-order zero at s = 1 has rank 1.
4.Rubin (1991) showed that for elliptic curves defined over an imaginary quadratic field K with complex multiplication by K, if the L-series of the elliptic curve was not zero at s=1,
then the p-part of the Tate?Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes p > 7.
5.Breuil et al. (2001), extending work of Wiles, proved that all elliptic curves defined over the rational numbers are modular, which extends results 2 and 3 to all elliptic curves over the rationals,
and shows that the L-functions of all elliptic curves over Q are defined at s = 1.
6.Bhargava & Shankar (2010) proved that the average rank of the Mordell?Weil group of an elliptic curve over Q is bounded above by 7/6. Combining this with the p-parity theorem by Dokchitser & Dokchitser (2010)
and the announced proof of the main conjecture of Iwasawa theory for GL2 by Skinner & Urban (2010),
they conclude that a positive proportion of elliptic curves over Q have analytic rank zero, and hence, by Kolyvagin (1989), satisfy the Birch and Swinnerton-Dyer conjecture.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<490KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef