[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 05/27 04:42 / Filesize : 481 KB / Number-of Response : 536
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む3



212 名前:現代数学の系譜11 ガロア理論を読む [2012/04/21(土) 12:00:03.94 ]
>>208
>それは対称群について説明してるだけじゃん

勉強不足、理解不足だな

繰り返し引用になるが>>122
ja.wikipedia.org/wiki/%E5%AF%BE%E7%A7%B0%E6%80%A7
対称性(たいしょうせい)、又はシンメトリー (英語: symmetry) は、ある変換に関して不変である性質である。
目次
1 空間の対称性
1.1 並進対称性
1.2 回転対称性
1.3 鏡像対称性
1.4 結晶
2 式の対称性
式の文字を入れ替えても元の式と変わらない式を対称式という。 例えば x^2+xy+y^2 は x と y の入れ替えについて不変な対称式である。
(引用おわり)

ここで
空間の対称性と、式の対称性とをつなぐのが群論なのだよ

群論という視点に立つと、空間の対称性と式の対称性に共通点が見えてくるのだ
それは、「対称群についての説明」とは全く違った視点に立つものだよ

なお、定義
”対称性(たいしょうせい)、又はシンメトリー (英語: symmetry) は、ある変換に関して不変である性質である。”
として与えられている

ある変換を演算あるいは操作と見て、演算あるいは操作について閉じた対象=群と捉える
閉じた対象=群とは、積の定義(連続した操作)や逆元(逆の操作)を考える
そうして、対称性→操作(変換)→操作(変換)について閉じられた対象→群とつながる
(こちらにとっては自明だが)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<481KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef