- 203 名前:現代数学の系譜11 ガロア理論を読む [2012/03/24(土) 20:07:39.28 ]
- >>201 スマソ途中でカキコになった
つづき 普通の素直な発想は、V=Aa+Bb+Cc+・・で、根(a,b,c・・・)の置換(a',b',c'・・・) (説明:aをa',bをb',cをc'・・・に置換)するとして、単純にV'=Aa'+Bb'+Cc'+・・とすれば良いじゃないかと それを複雑に、Vの有理式による根(a,b,c・・・)を考えて、a=φV,b=φ1V,・・・・,e=φm-1V, (注:5次方程式を想定して最後の根をeとしたが、当然さらなる高次の方程式も考えることができる) (注:なお、>>4の守屋注釈にあるように、φV,φ1V,・・・・,φm-1VはVの有理式という意味で、現代ではφ(V),φ1(V),・・・・,φm-1(V)と書かれるべき) と、Vの有理式を経由して、置換(a',b',c'・・・)とV'=Aa'+Bb'+Cc'+・・とを結びつけている その理由はなんだ? おそらく、部分群を考えるときや最後の定理>>161 ”根の任意の二つがわかれば・・・”を意識しているのだろう ”(V)| φV,φ1V,・・・・,φm-1V, (V')| φV',φ1V',・・・・,φm-1V', (V'')| φV'',φ1V'',・・・・,φm-1V'', ・・・・|・・・・・・・・・・・・・・・・・・・・・・・ (V''*)| φV''*,φ1V''*,・・・・,φm-1V''*,” の形で、Vの有理式を経由して置換とガロアリゾルベントVとを結び付けておけば、(V)、(V')、(V'')、・・・・、(V''*)の個数が即、置換の個数だということが分かる つまり、普段一般の置換を考えるときは置換(a',b',c'・・・)→V'=Aa'+Bb'+Cc'+・・という直感的な扱いで良いが、>>161のような場合に「実は方程式のガロア群は、Vの値がn(n-1)しか異なる値を取らない」というときに、ガロア群の位数=n(n-1)が直ちに出る そんなことで、Vの有理式を経由して置換とガロアリゾルベントVとを結び付けておくことで、理論展開が数学的にしっかりしてくると ガロアは考えたのではないだろうか
|

|