補題 G を群とする。 X を推移的(過去スレpart5の107)な G-集合とする。 m ≧ 2 を整数とする。 x と y を X の元とする。 G_x と G_y をそれぞれ x と y の安定化部分群(過去スレpart5の93)とする。 G_x が X - {x} 上 m - 1 重推移的(>>382)なら G_y は X - {y} 上 m - 1 重推移的である。
証明 G は X 上推移的だから σx = y となる σ ∈ G がある。 z = (z_1、...、z_(m-1)) と w = (w_1、...、w_(m-1)) を (X - {y})^[m-1] の元とする。 z’= σ^(-1)z w’= σ^(-1)w とする。 z’、w’∈ (X - {x})^[m-1] だから τz’= w’となる τ ∈ G_x がある。 τσ^(-1)z = σ^(-1)w よって、στσ^(-1)z = w στσ^(-1) ∈ σG_xσ^(-1) = G_y よって、G_y は (X - {y})^[m-1] 上推移的である。 証明終