命題 G を群とする。 X を推移的な G-集合(過去スレpart5の77)とする。 x を X のある元とする。 G_x を x の安定化部分群(過去スレpart5の93)とする。 B を x を含むブロック(>>357)とする。 >>369より H ={σ ∈ G;σB = B} は G_x を含む G の部分群である。 このとき B = Hx である。
証明 Hx ⊂ B であるから逆の包含関係を示せばよい。 y ∈ B を任意の元とする。 G は X に推移的に作用するから y = σx となる σ ∈ G がある。 y ∈ σB ∩ B だから σB = B である。 よって、σ ∈ H である。 よって、y = σx ∈ Hx である。 証明終