命題 G を群とする。 X を G-集合(過去スレpart5の77)とする。 x を X のある元とする。 G_x を x の安定化部分群(過去スレpart5の93)とする。 H を G_x を含む G の部分群とする。 Hx = {ηx; η ∈ H} と書く。 このとき H = {σ ∈ G; σHx = Hx } である。
証明 σ ∈ H のとき σHx = Hx である。
逆に σ ∈ G、σHx = Hx とする。 σηx = ρx となる η、ρ ∈ H がある。 ρ^(-1)σηx = x だから ρ^(-1)ση ∈ G_x ⊂ H よって、σ ∈ ρHη^(-1) = H