[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/19 12:27 / Filesize : 470 KB / Number-of Response : 686
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む



420 名前:現代数学の系譜11 ガロア理論を読む [2012/03/03(土) 09:32:06.95 ]
>>415
補足

ガロア論文>>3の第VII節は、原文ままでは分かりにくい
倉田>>4 P164の解説がお勧め
ガロアは、素数P次の既約方程式に対し
G=H1>H2>・・・>Hμ-1>Hμ=(e) (ここで>などは、群論の含む記号のアスキー代用。また、Gは方程式のガロア群、(e)は単位元のみからなる群)
という、べき根添加による正規拡大列を見ていた

そして、(e)の直前のHμが素数P次の巡回群であることを述べ、Hμ-1が線形群になることを述べる
倉田P166(エドワーズ)の証明では、Hμ-1が素数P次の巡回群の正規拡大であることを使って、線形性を導いている
直感的でわかりやすい

ガロアは時間が無かったのか、あるいは現在のように群論を表現する記法が十分発達していなかったのもあると思うが、お話し風に書いてあるので分かりにくい
一度、解説を読んで、それから原文を読むのが良い
ガロアは間違いなく、倉田(エドワーズ)が示すような風景を見ていたことは確かだろう。だが、見ている風景を表現する記法は当時十分発達していなかったのだった

なお、第VII節のP39の最後のラグランジュの分解式(正確にはそのn乗)を使う解法は、ラグランジュがすでに得ていたことは、
「数学史 (数と方程式)」小杉肇や「代数方程式のガロアの理論」Jean-Pierre Tignol>>385に記されている

倉田>>4は、P206「22. ラグランジュとガロア」で、両者の関係について詳しく述べている
2説あるという。一つは、ガロアがラグランジュ理論の完成者だと
上記の小杉肇やJean-Pierre Tignolを読むと、この説に近いかなと個人的には思う
(倉田は、P208で当時ガロアが逮捕されていたときの釈放要求の新聞記事でガロア論文は
「ラグランジュの解釈できなかった困難を取り除くもの・・・」を引用している)

”記者がこれらのことに通じているとは考えられないから、これはガロア自身が語ったことだろう”と






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<470KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef