[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/19 12:27 / Filesize : 470 KB / Number-of Response : 686
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む



289 名前:現代数学の系譜11 ガロア理論を読む [2012/02/18(土) 20:57:32.38 ]
>>282
>三次方程式のガロア群は、S3(3次の対称群)になるけれど
>で、S3の群の要素は、長さ3の巡回置換と、3つの互換とからなる

S3(3次の対称群)について下記がある

oshiete1.nifty.com/qa6387299.html
QNo.6387299 投稿日時 - 2010-12-15 23:54:32

3次の対称群を、
A={e = (1 2 3 |1 2 3), r+ =(1 2 3 | 2 3 1), r-=(1 2 3 | 3 1 2),
σ1=(1 2 3|1 3 2), σ2=(1 2 3 |3 2 1), σ3=(1 2 3|2 1 3)}
とする部分群G={e, r+, r-}およびH={e, σ1}に対して

(1) ラグランジェの定理を使って [A:G]および[A:H]を求めよ。
(2) G、Hに対して、全ての左剰余類を求めよ。
(3) G、Hに対して、全ての右剰余類を求めよ。
(4) G、HがAの正規部分群であるかを判定せよ。

分かりません。。よろしくお願いします!

A.
(1) [A:G]=2、[A:H]=3
(2) A=G+σ1G={e, r+, r-}+{σ1, σ3, σ2},A=H+r+H +r-H ={e, σ1}+{r+, σ2}+{r-, σ3}
(3) A=G+Gσ1={e, r+, r-}+{σ1, σ2, σ3},A=H+Hr+ +Hr- ={e, σ1}+{r+, σ3}+{r-, σ2}
(4) Gは正規部分群、Hは正規部分群ではない。

ここで、Gは長さ3の巡回置換を要素とする交代群A3
で、G=A3が、S3の唯一の正規部分群だと






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<470KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef