- 1 名前:名無しさん [2012/01/31(火) 22:32:36.78 ID:LTM9xtnu]
- ベストアンサー:”が、ガロアの論文は解りにくいモノでした。現在の整理された数学書の書き方に慣れているためか、ガロアの論文を少し眺めてみて、弱気になってしまいました。”ですか?
detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1371534513 数学の歴史に興味ある方にお尋ねします。「現代数学の系譜11、アーベル、ガロア、...noranekokuma2004さん 質問日時: 2011/9/18 「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」にチャレンジしております。 アーベル、ガロアとも、方程式の根の有理式を説明しています。 両者の説明とも、帰着するところは、根の有理式はいわゆるラグランジュの分解式のかたちをとるというところにあると、私は考えています。 ラグランジュは、3次方程式の根、α、β、γと1の3乗根によって u=α+βω+γω^2 v=α+βω^2+γω という式をつくることによって、3次方程式が解けることを示しました。 彼は、それを一般化し、素数次数の方程式の根と1の累乗根と組み合わせた、いわゆる、ラグランジュの分解式を提起しました。 皆さまの見解を伺いたいと思います。 ベストアンサーに選ばれた回答siolaglebaさん 回答日時:2011/9/21 ガロアの論文が、どんなものか知りたくて、私もこの本を読もうとしました。 高名な数学者さえ理解出来なかった論文とは、一体何がどのように書かれているのか興味があったからです。すでにガロア理論を知っていたので、軽く考えていました。 が、ガロアの論文は解りにくいモノでした。現在の整理された数学書の書き方に慣れているためか、ガロアの論文を少し眺めてみて、弱気になってしまいました。 自分には、読みたい数学は一杯あるし、ガロア理論も知っている。他の数学書に取りかかった方が良いと。諦めるのが早かったかもしれません。 ラグランジュの分解式は、方程式の可解性を議論するなかで、べき根拡大を考えるとき、使ったように記憶しています。 ラグランジュは、3次・4次方程式の解明に成功しましたが、5次方程式は失敗しました。が、ラグランジュの研究は無駄ではなかったことの証が、ラグランジュ分解式と思います。
- 143 名前:132人目の素数さん [2012/02/06(月) 21:46:56.86 ]
- さて、今日の本題は、「数学史 (数と方程式)」小杉肇
このP118にLagrangeの方程式論が詳しく書かれている 日本語の文献としては、Lagrangeの方程式論がもっとも詳しく書かれていると思う mail2.nara-edu.ac.jp/~kawaken/zemi_kawaken.html 平成 13 年度は数学史を学生のみんなと一緒に勉強しました。教科書として「数学史 (数と方程式)」小杉肇, 槙書店, をゼミのみんなで輪読しました。 そのあと、各自興味のあるところをつっこんで探求してもらいました。 www.jbook.co.jp/p/p.aspx/1159113/s 数学史(数と方程式) 数学選書 小杉 肇 発行年月:1973年06月 発売元:槙書店
- 144 名前:132人目の素数さん [2012/02/06(月) 22:00:29.23 ]
- >>143 つづき
小杉のLagrangeの方程式論のP120-121(Lagrangeの分解式を用いて、(n-2)!次の方程式の解法にする方法が記されている(これは一般の5次方程式の場合には6次式になるが)) これが、 ”アーベル ガロア 群と代数方程式 (現代数学の系譜 11) ”のP36のラグランジュの分解式>>120とそっくり 違いは、Lagrangeが一般5次方程式は当時まだ解けると思っていたのに対し ガロアは、解けないと思っていたこと
|

|