- 20 名前:132人目の素数さん mailto:sage [2012/01/03(火) 07:09:53.37 ]
- >>17
纏まっている文献は知らないけど、 ZF では成り立つが Zermelo の集合論で成り立たないことが有名な結果は幾つかある。 一番有名なのはω+ωがフォンノイマン順序数として存在すること。 ただ、順序型としてのω+ωは滅茶苦茶弱い算術でも扱えるので、実際の数学には影響はない。 本当に数学的な命題での例となるとそんなにないかな。 選択公理スレにも書いてある通り、ボレルゲームの決定性はその一例。 他に、「二つの一階の構造が、初等同値であることと、あるウルトラフィルタによる超冪が同型であることは同値」 っていうシェラハによるモデル理論の金字塔的結果は、 置換公理なしでは無理だって聞いたことがあるような。
|

|