[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2chのread.cgiへ]
Update time : 04/23 23:49 / Filesize : 334 KB / Number-of Response : 834
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数幾何学ビギナーズスレッド(2)



61 名前:50 mailto:sage [2011/12/27(火) 00:26:31.32 ]
>>48
二つの訂正をして再掲

命題。体kを係数とする定数で無い多項式F 
に対して、 
kを含む体Kで、F(X)がK[X]において一次式の積に分解 
するものがある。 
証明のすじ。 
Fの次数をn,k(Y)を体kの分数体(k係数分数式全体)とする。 
R:=k(Y)[Z_1,...,Z_n] 
とし、 
MをRの極大イデアルで、 
F(Y)-(Y-Z_1)...(Y-Z_n) 
が生成する単項イデアルを含むものとし、 
K:=R/Mとする。 (剰余環)
Kはk(Y)を含む体であり、 
F(Y)=(Y-z_1)...(Y-z_n) 
である。ここでz_iは、 
Z_iのKでの剰余類。 
(ここまでは、よいとする) 
ここから、どうやって証明を終わらせますか? 
なぜz_1とz_2は異なる剰余類?






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<334KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef