- 57 名前:132人目の素数さん mailto:sage [2011/11/22(火) 03:20:45.83 ]
- >>29
Zを整数の集合、FをZ上のσ集合族として測度空間(Z,F,m)が次を満たしたとする (1)m(Z)=1 (2)(∀n∈Z)(∀A∈F) A+n∈F (2)(∀n∈Z)(∀A∈F) m(A)=m(A+n) まず{0}∈FならF=2^Zとなることと(1)〜(3)を満たす(Z,2^Z,m)は存在しないことに注意する A≠φとなるA∈Fをとってきて I_A=∩{a∈A}(A-a) とおくと(2)よりI_A∈Fである 0∈I_A より ∃i∈I_A(i≠0) が成り立つ。また i∈I_A, n∈Z → in∈I_A と i,j∈I_A → i+j∈I_A となることを使えば、ある数n_Aがあって I_A={..., -2n_A, -n_A, 0, n_A, 2n_A, ...} だと示せる 次に I_F=∩{A∈F, A≠φ}I_A とおけば I_A の候補は可算個しかないので 右辺は実質は可算個の集合の共通部分になり I_F∈F となる また 0∈I_F よりある数n_Fがあって I_F={..., -2n_F, -n_F, 0, n_F, 2n_F, ...} だと示せる そして F' を I_F, I_F + 1,...., I_F + n_F -1 で生成されるσ集合族とすると(2)よりF'⊂Fである A∈F, A≠φ ならば I_A は適当な数列 a_1,...,a_k があって I_A=∪_l (I_F + a_l) となるので I_A ∈ F' である。また A = ∪{a∈A} (I_A + a) なので A∈F' である よって F⊂F' より F=F' となる 以上より (Z,F,m) が(1)〜(3)を満たすσ集合族ならば、ある数n_Fがあって Fは I_F, I_F + 1,...., I_F + n_F -1 で生成されるσ集合族となることが分かる という風に Z をもっと一般の可算環(って言葉あるっけ?)に出来そうな証明が出来た
|

|