- 428 名前:7 mailto:sage [2010/03/17(水) 21:53:07 ]
- >>427
例えば 賞金の組が{5000*2^n,10000*4^n}(n=0,1,2,3,…)に選ばれる確率(99^n)/100^(n+1) とすれば、最初に確認した金額が5000円の時のみ、交換後の期待値は2倍に 5000円以外を確認した時は交換後の期待値は148/199(≒1.246)倍になる。 つまり、どの金額を確認しても、交換後の期待値の方が1倍になる。 でも、このこと自体は矛盾でもパラドクスでもなんでもない。 確率分布もちゃんと存在するものである。 あくまでも 未確認の金額の期待値は確認済みの金額(金額の期待値ではない)の2倍か約1.246倍 になるのであって、金額確認前に何回も交換したからといって、期待値がどんどん 大きくなるわけではない。中身を確認してないのに一方の金額の期待値が他方の金額の 2倍か1.246倍とすることはできない。この辺のことは240自身が書いた>>345の ジョークに通ずるものがあるだと思うのだが…。
|

|