- 355 名前:326 mailto:sage [2010/03/16(火) 23:30:16 ]
- >>351
前半 そこは本質じゃないと思う 封筒の金額を(A,2A)と置く。 この時選んだ封筒の中身の期待値は 1/2 ( A + 2A ) = 3A/2 他方の封筒も同じ つまりAの値や「封筒の中身がAである確率」によらず、どちらの封筒を選んでも期待値は等しい。 この命題を(1)としよう もうこの時点で >「任意の金額c円に対し、 >選んだ封筒の金額がc円のとき、もう一方が2倍である確率が1/2である。」 >という確率分布は存在しない。 っていうことの証明になっている。 なぜなら、 選んだ封筒の金額がc円であった時、もう一方の封筒の金額が2c円である確率をP(c)とする このとき他方の封筒の期待値は (1 - P(c) ) * c/2 + P(c) * 2c で表される。コレを式(2)とする。 (1)は前述の通り金額に依存しない命題です。一方、式(2)は金額=cの場合の「条件付き確率」。 ここで、金額=cの条件を外して、封筒の期待値を求めるにはどうすればいいか? 選んだ封筒の期待値は 「 c * (cの出現確率) をcの定義域全体で積分したもの 」 。 同様に、他方の封筒の期待値は 「 式(2) * (cの出現確率) をcの定義域全体で積分したもの 」。 この二つは(1)より等しい。 なんで下の式も(cの出現確率)を掛けているの?って思うかも知れないが、今は行数不足で書ききれない。理解できなかったら質問してくれ。 もしP(c)が任意のcに関して1/2だとしたら、(2)は 5c/4 と書ける。よって積分の結果は明らかに等しくならない。つまりP(c)が任意のcに関して1/2になることはない。 >>336で親視点とか子視点が不自然って言ったのはこういうこと。 詳しく読んでないから違うかもしれないけど、子視点ってつまり「金額=cの場合の条件付き確率」でしょ? 金額で積分しちゃえば親視点(?)になるんだから、分かりにくい考え方だと思うけどなー。
|

|