[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2chのread.cgiへ]
Update time : 04/03 03:48 / Filesize : 362 KB / Number-of Response : 716
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

こんな確率求めてみたい その1/8



96 名前:132人目の素数さん mailto:sage [2010/02/14(日) 23:29:34 ]
>>8
いろいろ式をいじってみたけど解けなかった。解ける漸化式じゃないんだと思う。
でも途中式にきれいな形のが出てきたから一応貼ってみる。

とりあえず、Δa[n] = a[n+1] - a[n] = -a[n]^2/2 と差分の形で書き、
差分を微分にすりかえて挙動を見てみると、da/dn = -a^2/2 から a = 2/(n+1) 。
なので a[n]は 1/n くらいになっている。

これを手掛かりに、b[n] = 2/a[n] - 1 と置換してみると、
b[n+1] = b[n] + 1/b[n] + 1 と、ちょっときれいな形になった。(b[1]=1)

b[n+1] = (√b[n] + 1/√b[n])^2 - 1 と変形できるので、
√b[n] + 1/√b[n] = cosh(φ[n]) と置換してみると、
b[n+1] = sinh(φ[n])、 cosh(φ[n+1]) = cosh^2(φ[n])/sinh(φ[n]) 。
f(φ) = 1/cosh(φ) と置くと、f(φ[n+1]) = -f '(φ[n]) という関係になっていた。

厳密解を諦めて a[n] の値を評価してみると、2/(n + 1 + log n) くらいになっていそう。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<362KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef