- 68 名前:Kummer ◆g2BU0D6YN2 [2009/06/29(月) 20:08:21 ]
- 補題
X 局所コンパクト空間とし、μを X 上の正値Radon測度とする。 p > 1 を実数とし、f を L^p(X, C, μ) (過去スレ008の299)の元で N_p(f) = (∫ |f|^p dμ)^(1/p) > 0 とする。 このとき、∫ fh dμ = N_p(f) となる h ∈ L^q(X, μ, C) で、 N_q(h) = (∫ |h|^q dμ)^(1/q) = 1 となるものが存在する。 ここで、q = p/(p - 1) である。 証明 h = (N_p(f))^(1 - p) |f|^(p-1) (f~/|f|) とおく。 ただし、|f(x)| = 0 のときは、h(x) = 0 とする。 ここで、f~ は f の複素共役である。 |h|^q = (N_p(f))^(-p) |f|^p よって、N_q(h)^q = (N_p(f))^(-p) (∫ |f|^p dμ) = 1 って、N_q(h) = 1 fh = (N_p(f))^(1 - p) |f|^(p-1) (ff~/|f|) = (N_p(f))^(1 - p) |f|^p よって、∫ fh dμ = (N_p(f))^(1 - p) ∫ |f|^p dμ = (N_p(f))^q 証明終
|

|