[表示 : 全て 最新50 1-99 101- 2chのread.cgiへ]
Update time : 05/09 18:50 / Filesize : 93 KB / Number-of Response : 130
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 009



110 名前:Kummer ◆g2BU0D6YN2 [2007/12/15(土) 14:12:22 ]
命題
K を可換とは限らない体とする。
| | を K の自明でない絶対値(過去スレ006の414)とする。
E と F を K 上の左位相線形空間とし E の位相は半ノルムの集合 Γ で
定義され(過去スレ008の469) F の位相は半ノルムの集合 Γ' で
定義されるとする。

f : E → F を線形写像とする。
f が連続であるためには
任意の q ∈ Γ' に対して Γ の元の有限列 p_i, i = 1, ... , n と
実数 α > 0 が存在し任意の x ∈ E に対して

q(f(x)) ≦ αsup{ p_i(x) | i = 1, ... , n}

となることが必要十分である。

証明
条件の十分性:
任意の γ > 0 に対して p_i(x) < γ/α, i = 1, ... , n
であれば、q(f(x)) < γ であるから f は 0 で連続である。
従って、
a ∈ E と任意の γ > 0 に対して p_i(x - a) < γ/α, i = 1, ... , n
であれば、q(f(x) - f(a)) = q(f(x - a)) < γ であるから
f は a で連続である。

(続く)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](*・∀・)<93KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef