[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 05/09 11:56 / Filesize : 237 KB / Number-of Response : 946
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第十二問



783 名前:132人目の素数さん [2008/01/02(水) 01:39:36 ]
>>742

{\large $\displaystyle \lim_{x\rightarrow\infty}\frac{x^{m-n}[\{\log(1+x)\}^{n+1}-(\log x)^{n+1}]^{m}}{[\{\log(1+x)\}^{m+1}-(\log x)^{m+1}]^{n}}$}

$=\displaystyle \lim_{x\rightarrow\infty}\frac{x^{m-n}\{\log(1+x)-(\log x)\}^{m}[\{\log(1+x)\}^{n}+\{\log(1+x)\}^{n-1}(\log x)+\
text{・・・}+\{\log(1+x)\}^{n-k}(\log x)^
{\mathrm{k}}+\text{・・・}+(\log x)^{n}]^{m}}{\{\log(1+x)-(\log x)\}^{n}[\{\log(1+x)\}^{m}+\{\log(1+x)\}^{m-1}(\log x)+\text{・・・}+
\{\log(1+x)\}^{m-k}(\log x)^{\mathrm{k}}+\text{・・・}+(\log x)^{m}]^{n}}$

$=\displaystyle \lim_{x\rightarrow\infty}\frac{x^{m-n}\{\log(1+x)-(\log x)\}^{m-n}[\{\log(1+x)\}^{n}+\{\log(1+x)\}^{n-1}(\log x)+\text{・・・}+\
{\log(1+x)\}^{n-k}(\log x)^{\mathrm{k}}+\text{・・・}+(\log x)^
{n}]^{m}}{[\{\log(1+x)\}^{m}+\{\log(1+x)\}^{m-1}(\log x)+\text{・・・}+\{\log(1+x)\}^{m-k}(\log x)^{\mathrm{k}}+\text{・・・}+(\log x)^{m}]^{n}}$

=$\displaystyle \lim_{x\rightarrow\infty}\{x\log\frac{(1+x)}{x}\
}^{m-n}$・$\displaystyle \{\frac{[\{\log(1+x)\}^{n}+\{\log(1+x)\}^{n-1}(\log x)+\text{・・・}+
\{\log(1+x)\}^{n-k}(\log x)^{\mathrm{k}}+\text
{・・・}+(\log x)^{n}]^{\frac{1}{n}}}{[\{\log(1+x)\}^{m}+\
{\log(1+x)\}^{m-1}(\log x)+\text{・・・}+\{\log(1+x)\}^{m-k}(\log x)^
{\mathrm{k}}+\text{・・・}+(\log x)^{m}]^{\frac{1}{m}}}\}^{mn}$







[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<237KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef