- 783 名前:132人目の素数さん [2008/01/02(水) 01:39:36 ]
- >>742
{\large $\displaystyle \lim_{x\rightarrow\infty}\frac{x^{m-n}[\{\log(1+x)\}^{n+1}-(\log x)^{n+1}]^{m}}{[\{\log(1+x)\}^{m+1}-(\log x)^{m+1}]^{n}}$} $=\displaystyle \lim_{x\rightarrow\infty}\frac{x^{m-n}\{\log(1+x)-(\log x)\}^{m}[\{\log(1+x)\}^{n}+\{\log(1+x)\}^{n-1}(\log x)+\ text{・・・}+\{\log(1+x)\}^{n-k}(\log x)^ {\mathrm{k}}+\text{・・・}+(\log x)^{n}]^{m}}{\{\log(1+x)-(\log x)\}^{n}[\{\log(1+x)\}^{m}+\{\log(1+x)\}^{m-1}(\log x)+\text{・・・}+ \{\log(1+x)\}^{m-k}(\log x)^{\mathrm{k}}+\text{・・・}+(\log x)^{m}]^{n}}$ $=\displaystyle \lim_{x\rightarrow\infty}\frac{x^{m-n}\{\log(1+x)-(\log x)\}^{m-n}[\{\log(1+x)\}^{n}+\{\log(1+x)\}^{n-1}(\log x)+\text{・・・}+\ {\log(1+x)\}^{n-k}(\log x)^{\mathrm{k}}+\text{・・・}+(\log x)^ {n}]^{m}}{[\{\log(1+x)\}^{m}+\{\log(1+x)\}^{m-1}(\log x)+\text{・・・}+\{\log(1+x)\}^{m-k}(\log x)^{\mathrm{k}}+\text{・・・}+(\log x)^{m}]^{n}}$ =$\displaystyle \lim_{x\rightarrow\infty}\{x\log\frac{(1+x)}{x}\ }^{m-n}$・$\displaystyle \{\frac{[\{\log(1+x)\}^{n}+\{\log(1+x)\}^{n-1}(\log x)+\text{・・・}+ \{\log(1+x)\}^{n-k}(\log x)^{\mathrm{k}}+\text {・・・}+(\log x)^{n}]^{\frac{1}{n}}}{[\{\log(1+x)\}^{m}+\ {\log(1+x)\}^{m-1}(\log x)+\text{・・・}+\{\log(1+x)\}^{m-k}(\log x)^ {\mathrm{k}}+\text{・・・}+(\log x)^{m}]^{\frac{1}{m}}}\}^{mn}$
|

|