- 769 名前:132人目の素数さん mailto:sage [2008/01/01(火) 19:48:50 ]
- >>742
log(1+x) = log(x) +(1/x) -O(1/2x^2) より (log(1+x))^(m+1) - (log(x))^(m+1) = (m+1)*{1 -O(1/2x)}(1/x)(log(x))^m, {(log(1+x))^(m+1) - (log(x))^(m+1)}^n = (m+1)^n*{1 -O(n/2x)}(1/x^n)(log(x))^(mn), x^(n-m)*{(log(1+x))^(m+1) - (log(x))^(m+1)}^n / {(log(1+x))^(n+1) - (log(x))^(n+1)}^m = {(m+1)^n/(n+1)^m}{1 +O((m-n)/2x)} → (m+1)^n/(n+1)^m (x→∞) m=98, n=100, >743 (x^2)*{ [(log(1+x))^99 - (log(x))^99]/log(x)^98 }^2 〜 99^2 の間違い。
|

|