- 89 名前:Kummer ◆g2BU0D6YN2 [2007/04/02(月) 22:37:17 ]
- 命題
k ≧ 1 と c ≧ 1 を有理整数で c は 2k の約数とする。 このとき、 √(k^2 + c) = [k, 2k/c, 2k, 2k/c, 2k, . . ,] 証明 0 < c < 2k + 1 だから k < √(k^2 + c) < k + 1 よって √(k^2 + c) = k + (√(k^2 + c) - k) k < √(k^2 + c) < k + 1 より 2k < √(k^2 + c) + k < 2k + 1 よって 1/(√(k^2 + c) - k) = (√(k^2 + c) + k)/c = 2k/c + (√(k^2 + c) - k)/c c/(√(k^2 + c) - k) = √(k^2 + c) + k = 2k + (√(k^2 + c) - k) 以上から √(k^2 + c) = [k, 2k/c, 2k, 2k/c, 2k, . . ,] 証明終
|

|