[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



80 名前:Kummer ◆g2BU0D6YN2 [2007/04/01(日) 18:50:16 ]
命題
α を実無理数として、任意の n ≧ 1 に対して
α = [a_0, . . . , a_n, α_(n+1)] とする。
各 a_i は有理整数で i ≧ 1 のとき a_i ≧ 1 で
α_(n+1) > 1 である。

p_n = P(a_0, a_1, ... , a_n)
q_n = P(a_1, ... , a_n)
とおく。
ここで、P(a_0, a_1, ... , a_n) は >>44 で定義された多項式である。

このとき
|α - p_n/q_n| < 1/q_n/q_(n+1)
である。

証明
>>79 より
|α - p_n/q_n | = 1/q_n(q_nα_(n+1) + q_(n-1))
である。

α_(n+1) > a_(n+1) だから

|α - p_n/q_n | < 1/q_n(q_na_(n+1) + q_(n-1))

>>44 より
q_(n+1) = q_na_(n+1) + q_(n-1)

よって
|α - p_n/q_n | < 1/q_nq_(n+1)
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef