- 466 名前:Kummer ◆g2BU0D6YN2 [2007/06/13(水) 22:19:16 ]
- D を平方数でない(正または負の)有理整数で、D ≡ 0 または 1 (mod 4)
とする。 f = (a, b, c) と g = (k, l, m) を判別式 D の2次形式とする。 e = gcd(a, b, c) = gcd(k, l, m) とする。 a = ea' b = eb' c = ec' k = ek' l = el' m = em' とすれば (a', b', c') と (k', l', m') は原始的な2次形式である。 f = (a, b, c) と g = (k, l, m) が F(D)/Γ の同じ類に属すとする。 fσ = g となる σ = (p, q)/(r, s) ∈ SL_2(Z) がある。 過去スレ4の280より k = ap^2 + bpr + cr^2 l = 2apq + b(ps + qr) + 2crs m = aq^2 + bqs + cs^2 これから (a', b', c')σ = (k', l', m') となる。
|

|