- 41 名前:Kummer ◆g2BU0D6YN2 [2007/03/28(水) 22:30:17 ]
- 今度は判別式が正の2次形式について調べる。
判別式が負の2次形式は2次の虚数の SL_2(Z) による同値類が関係 していた(過去スレ4の406)。 判別式が正の2次形式は2次の実無理数の SL_2(Z) による同値類が 関係する。 この問題は以下に見られるように連分数の理論と密接に関係する。 連分数は実数 θ を有理数で近似する問題から自然に現れる。 [θ] で θ 以下の最大の有理整数を表す。 k_0 = [θ] とおく。 k_0 ≦ θ < k_0 + 1 である。 0 ≦ θ - k_0 < 1 である。 0 < θ - k_0 なら θ - k_0 = 1/θ_1 となる実数 θ_1 がある。 θ_1 > 1 である。 θ = k_0 + 1/θ_1 となる。 同様に k_1 = [θ_1] とおく。 0 < θ_1 - k_1 なら θ_1 - k_1 = 1/θ_2 となる実数 θ_2 がある。 θ_2 > 1 である。 θ_1 = k_1 + 1/θ_2 となる。 θ = k_0 + 1/θ_1 より θ = k_0 + 1/(k_1 + 1/θ_2) である。 この操作を続けていくと θ = k_0 + 1/(k_1 + 1/(k_2 + ... + 1/(k_(n-1) + 1/θ_n))...) となる。 この右辺の式に現れた k_0 + 1/(k_1 + 1/(k_2 + 1/(k_3 ... + 1/k_(n-1))...) の形の分数を連分数 と呼ぶ。正確には正則連分数という。 これを [k_0, k_1, ..., k_(n-1)] と書くことにする。 高木の「初等整数論講義」ではこの記号を別の意味で使っているので注意 する必要がある。
|

|