- 284 名前:Kummer ◆g2BU0D6YN2 [2007/05/06(日) 07:16:12 ]
- (I, s) ∈ I(R) × {±1} とする。
即ち、I は R の可逆分数イデアルであり、s = ±1 である。 I = [α, β] で、α, β は正に向き付けられているとする(>>188)。 >>197 で f(α, β, s; x, y) = sN(xα - syβ)/N(I) とおいた。 f(α, β, s; x, y) ∈ F_0(D) である。 I = [γ, δ] で、γ, δ の向きも正とする。 >>189 より α = pγ + qδ β = rγ + tδ となる有理整数 p, q, r, t で pt - qr = 1 となるものがある。 f(α, β, s; x, y) = sN(xα - syβ)/N(I) に α = pγ + qδ β = rγ + tδ を代入すると f(α, β, s; x, y) = sN(x(pγ + qδ) - sy(rγ + tδ))/N(I) = s((xp - ysr)γ - s(-xsq + yt)δ)/N(I) = f(γ, δ; xp - ysr, -xq + yst) 従って (a, b, c) = (k, l, m)σ ここで σ = (p, -sr)/(-sq, t) ∈ SL_2(Z)
|

|