[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



282 名前:Kummer ◆g2BU0D6YN2 [2007/05/05(土) 20:22:44 ]
[ (a, b, c) ] ∈ F_0(D)/Γ のとき
[([a, (-b + √D)/2], sign(a))] ∈ (I(R) × {±1})/P~
が代表 (a, b, c) の取り方によらないことを示す。

ここで、[ (a, b, c) ] は (a, b, c) が属す F_0(D)/Γ の類を表す。
同様に、[([a, (-b + √D)/2], sign(a))] は (I(R) × {±1})/P~ の
類を表す。

f = (a, b, c) ∈ F_0(D) のとき
Ψ(f) = [([a, (-b + √D)/2], sign(a))] ∈ (I(R) × {±1})/P~
とおく。

過去スレ4の269より
SL_2(Z) は S = (1, 1)/(0, 1) と T = (0, -1)/(1, 0) で生成される。

従って、いつものように
Ψ(fS) = Ψ(f) と Ψ(fT) = Ψ(f) を証明すればよい。

>>185 より
(a, b, c)S = (a, 2a + b, a + b + c)

よって
Ψ(fS) = [([a, -a + (-b + √D)/2], sign(a))]
= Ψ(f)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef