- 209 名前:Kummer ◆g2BU0D6YN2 [2007/04/29(日) 04:43:31 ]
- 補題
R = [1, fω] を2次体 Q(√m) の整環とし、D をその判別式とする。 R の任意のイデアル I ≠ 0 は I = [a, b + c(D + √D)/2] と一意に書ける。 ここで a > 0, 0 ≦ b < a, c > 0 で a と b は c で割れる。 証明 θ = (D + √D)/2 とおく。 過去スレ4の585より R = [1, θ] だから I = [a, b + cθ], a > 0, 0 ≦ b < a, c > 0 と一意に書ける ことは過去スレ4の14の証明と同様である。 θ + θ' = D θθ' = (D^2 - D)/4 より θ は X^2 - DX + (D^2 - D)/4 の根である。 従って θ^2 = Dθ - (D^2 - D)/4 aθ ∈ I だから a は c で割れる。 (b + cθ)θ = bθ + cθ^2 = (b + cD)θ - c(D^2 - D)/4 ∈ I D ≡ 0, 1 (mod 4) だから D^2 ≡ 0, 1 (mod 4) よって D^2 ≡ D (mod 4) よって c(D^2 - D)/4 ∈ Z である。 よって b + cD ≡ 0 (mod c) となる。 よって b ≡ 0 (mod c) となる。 証明終
|

|