補題 R = [1, fω] を2次体 Q(√m) の整環とし、 I ≠ 0 を R のイデアルとする。 R = [μ, ν] を R のある基底による表示とする。 I = [α, β] を I のある基底による表示とする。 I ⊂ R だから α = pμ + qν β = rμ + sν と書ける。ここで p, q, r, s は有理整数である。 このとき N(I) = |ps - qr| である。
証明 I = [a, b + cfω] を I の標準基底 (過去スレ4の429) による 表示とする。 N(I) = ac である(過去スレ4の438)。