- 137 名前:Kummer ◆g2BU0D6YN2 [2007/04/13(金) 22:44:28 ]
- 命題
θ, R は >>126 同じとする。 A = (p_0, q_0)/(r_0, s_0) ∈ GL_2(Z) B = (p_1, q_1)/(r_1, s_1) ∈ GL_2(Z) で θ = Aθ θ = Bθ とする。 E_0 = r_0θ + s_0 E_1 = r_1θ + s_1 とおけば、>>131 より E_0, E_1 は R の単数である。 AB = C とすれば θ = Cθ である。 C = (p_2, q_2)/(r_2, s_2) ∈ GL_2(Z) E_2 = r_2θ + s_2 とおく。 このとき、E_0E_1 = E_2 である。 証明 E_0E_1 = (r_0θ + s_0)(r_1θ + s_1) = r_0θ(r_1θ + s_1) + s_0(r_1θ + s_1) = r_0(p_1θ + q_1) + s_0(r_1θ + s_1) = (r_0p_1 + s_0r_1)θ + (r_0q_1 + s_0s_1) = r_2θ + s_2 証明終
|

|