- 132 名前:Kummer ◆g2BU0D6YN2 [2007/04/13(金) 17:02:38 ]
- 過去スレ4の590より
R = {(x + y√D)/2 ; x ∈ Z, y ∈ Z, x ≡ yD (mod 2) } である。 従って、 D ≡ 0 (mod 4) のとき R = {(u + v√D)/2 ; u ∈ Z, v ∈ Z, u ≡ 0 (mod 2) } である。 D ≡ 1 (mod 4) のとき R = {(u + v√D)/2 ; u ∈ Z, v ∈ Z, u ≡ v (mod 2) } である。 α = (u + v√D)/2 が R の単数なら、 αα' = (u + v√D)/2 (u - v√D)/2 = (u^2 - Dv^2)/4 = ±1 逆に (u, v) が u^2 - Dv^2 = ±4 の有理整数解なら u^2 ≡ Dv^2 (mod 4) D ≡ 0 (mod 4) のとき u^2 ≡ 0 (mod 4) u ≡ 0 (mod 2) D ≡ 1 (mod 4) のとき u^2 ≡ v^2 (mod 4) u ≡ v (mod 2) よって、いずれの場合にも α = (u + v√D)/2 は R の元であり 従って R の単数である。
|

|