[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



122 名前:Kummer ◆g2BU0D6YN2 [2007/04/11(水) 15:16:24 ]
命題(高木の初等整数論講義)
θ を簡約された2次無理数とし、
θ = (pθ + q)/(rθ + s) とする。
ここで p, q, r, s は有理整数で ps - qr = ±1 である。
さらに、rθ + s > 1 とする。

このときある n ≧ 1 があり、
θ = [k_0, . . . , k_(n-1), θ] となる。
ここで、各 k_i は有理整数で i ≧ 1 のとき k_i ≧ 1 である。

証明
E = rθ + s, E' = rθ' + s とおく。
>>120 より EE' = ps - qr = ±1 である。
|EE'| = 1 で E > 1 だから |E'| < 1
したがって、E - E' > 0
即ち r(θ - θ') > 0
θ は簡約された2次無理数だから、θ > 1, -1 < θ' < 0
である(>>95)。
よって、θ - θ' > 0 だから r > 0 である。
よって、rθ' + s > -r + s

EE' = 1 のとき E > 1 より 1 > E' > 0
よって r + 1 > r + E'
一方、上より E' > -r + s だから r + E' > s
よって r + 1 > s
よって r ≧ s

EE' = -1 のときは E > 1 より 0 > E' > -1
よって r > r + E'
一方 r + E' > s だから r > s
(続く)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef